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Abstract— Grid is the system which provides a new, powerful and innovative platform that caters the need of massively computational or 
data intensive applications from its pool of resources like processors, memory, data, services etc. It differs from traditional computing sys-
tems because of its heterogeneous nature and back ground workloads. Performance and utilization of the grid rests on the optimal balanc-
ing of load among the available nodes which is very complex and highly dynamic in nature. Finding optimal solution in load balancing for 
such an environment using the traditional method is an NP-hard problem whereas heuristic approaches will provide near optimal solutions. 
Algorithms that could capture the dynamic need and complexity have to be developed for solving wide range of load balancing scenarios. 
Heuristic and artificial life techniques have the power of providing near by solutions from large search spaces since it deals real world sce-
narios with the capability of handling very large dataset and combinations. In this study, suitability and performance comparison are dis-
cussed with various heuristic and agent based techniques. Genetic Algorithm, Tabu Search, Ant Colony Optimization, Particle swarm Opti-
mization are analyzed with their merits, demerits, solutions, issues and improvements towards load balancing in computational grid. Simi-
larity in their nature towards load balancing motivates the attempts in the experimentation to get near optimal solutions from unpredictable 
information. Performance comparison is analyzed with algorithms like min-max, max-min and Sufferage embedded with Genetic Algorithm 
and Tabu search. Another heuristic method, Ant Colony Optimization algorithm is suitable for scheduling in grid environment which in tern 
balances the load. For the same purpose particle swarm optimization algorithm is also adopted. Particle Swarm Optimization is one of the 
latest evolutionary optimization techniques by nature which has the better ability of global searching leading to minimal makespan time due 
to the linear decreasing of inertia weight in it. From the literature, it could be understood that it was successfully applied in training the neu-
ral network and optimized result was been obtained. These techniques were studied with their successful results and analyzed. Agents can 
also be applied for handling grid resources and multi-agent approach can be applied for balancing the load through out the system. Agents 
can co-operate each other in making the decisions to balance the load among them through advertisement, discovery and distribution. 
Many results are proving that intelligent agents are effective enough to achieve resource scheduling, load balancing, execution performance 
and better resource utilization. 
 

Index Terms— Agent, Ant Colony Optimization, Computational Grid, Genetic Algorithm, Load Balancing, Particle Swarm optimization, Tabu 
Search.    

——————————      —————————— 

1 INTRODUCTION                                                                     

Grid is defined as a type of parallel and distributed system 

that enables the sharing, selection, and aggregation of geo-
graphically distributed autonomous resources dynamically at 
runtime depending on their availability, capability, perfor-
mance, cost, and quality-of-service. Grid technology is defined 
as the technology that enables resource virtualization, on de-
mand provisioning and resource sharing between organiza-
tions. It can be confined to the network of computer work-
stations within a bigger organization like corporation or it can 
be a public collaboration. 

Computational grid provides a better platform to acquire 
large amount of resources as a single storage which enables 
distributed processing of computational intensive applica-
tions. They are cost effective since it collects the information 
about idle resources and make them under the use on demand 
which enables pay for use. To fully utilize the resources with 
conditions and constraints, resource management, efficient 

allocation of resources to the jobs and balancing the load with 
internal and external requirements are to be effectively han-
dled.    

The load balancing mechanism aims at equally spreading 
the load to each and every computing node which in turn 
leads to maximize the utilization and minimize the total task 
execution time [1]. Fair distribution is needed among all the 
computing nodes to achieve the goals and objectives. Gradual-
ly the gap between heaviest and lightest load should be mini-
mized. Makespan is a metric which defines the amount of time 
taken between the starting of the application and ending of the 
same in a computing node. 

In the centralized approach central node acts as scheduler 
and makes all load balancing decisions where as all nodes are 
engaged in load balancing decisions and implementation in 
the decentralized approach [2],[3]. In static approach charac-
teristics of nodes and jobs are known in advance whereas they 
are obtained on the fly in the dynamic approach [4].  

From the literature three approaches are studied towards 
load balancing in the grid environment namely Min-min, 
Max-min, and Sufferage. For each and every task, minimum 
completion time (MCT) is calculated. In the Min-Min ap-
proach minimum MCT among all tasks is selected for load 
balancing where as it is reverse in Max-Min approach. Suffer-
age is the measure which is calculated as the difference be-
tween best MCT and second best MCT. Based upon the suffer-
age values load balancing is carried out among all the tasks. 
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The term heuristic is used for algorithms which find solu-
tions among all possible combinations. These algorithms find 
a solution close to the best one and they find it fast and easily 
.In this paper, we analyze various heuristic methods like Ge-
netic Algorithm (GA), Tabu Search (TS) , Ant Colony Optimi-
zation (ACO) and Particle Swarm Optimization (PSO) for the 
power of real world nature in taking decisions and Agent 
based approaches for the power of decentralization. This is 
done towards their functionality, performance, issues, merits, 
demerits and scope to the improvement. 

 GA is often used to solve the problem in which possible 
solution involves searching a big search space of potential so-
lutions. Since load balancing in computational grid has also a 
big solution search space, GA can be applied to derive the so-
lution for the same. Tabu search has been successfully applied 
to a wide range of theoretical and practical problems, includ-
ing graph coloring, vehicle routing, job shop scheduling, 
course scheduling, and maximum independent set problem 
[5],[6],[7],[8],[9]. One main ingredient of Tabu Search is the use 
of adaptive memory to guide problem solving. Tabu search 
uses a set of strategies and learned information to mimic hu-
man insights for problem solving. 

The use of Genetic algorithm and Tabu Search provides ef-
ficient solutions to the load balancing of grid. The Sufferage 
algorithm is combined with GA, as well as TS, which im-
proves the overall performance of the algorithms. A compari-
son on the performance improvement of each algorithm is also 
investigated. 

The ant colony optimization algorithm is a heuristic algo-
rithm for solving computational problems which can be re-
duced to find good paths through graphs. This algorithm is a 
member of swarm intelligence methods. This algorithm is aim-
ing to search for an optimal path in a graph based on the be-
havior of ants seeking a path between their colony and a 
source of food. The original idea has since diversified to solve 
a wider class of numerical problems. As a result, several prob-
lems have emerged, drawing on various aspects of the behav-
ior of ants. 

Particle swarm optimization is an another algorithm mod-
eled on swarm intelligence, which finds a solution to an opti-
mization problem in a search space, or model and predict so-
cial behavior in the presence of objectives. The PSO is a sto-
chastic and population-based computer algorithm modeled on 
swarm intelligence. Swarm intelligence is based on social-
psychological principles and provides insights into social be-
havior, as well as contributing to many engineering applica-
tions. The PSO algorithm is used to find an optimal solution to 
an objective function in a search space which is a direct search 
method depends only on the objective function. Hence it is 
more powerful. 

In agent based approach, each agent is responsible for re-
source scheduling and load balancing across multiple 
hosts/processors in a local grid. The agent couples application 
performance data with iterative heuristic algorithms to dy-
namically minimize task makespan and host idle time, whilst 
meeting the deadline requirements for each task. The algo-
rithm is based on an evolutionary process and is therefore able 

to absorb system changes such as the addition or deletion of 
tasks, or changes in the number of hosts/processors available 
in a local grid. 

At the global grid level, each agent is a representative of a 
grid resource and acts as a service provider of high perfor-
mance computing power. Agents are organized into a hierar-
chy and cooperate with each other to discover available grid 
resources for tasks using a peer-to-peer mechanism for service 
advertisement and discovery. Several metrics are considered 
to measure the load balancing performance of grid agents. A 
case study proves that intelligent agents, supported by appli-
cation performance prediction, iterative heuristic algorithms 
and service discovery capabilities, are effective to achieve 
overall resource scheduling and load balancing, improve ap-
plication execution performance and maximize resource utili-
zation. 

The following section deals about the grid system and its 
communication model that is used for this study. This is fol-
lowed by the above said heuristic and agent based methods 
are analyzed to study the load balancing patterns. Experimen-
tations are illustrated with the simulation tool kit GridSim. 
Result section provides the details of simulation and applica-
bility of the approaches.   

2  SYSTEM MODEL 
We consider the computational grid system as a set of sites 
which are connected by a communication network. Each site 
may contain many computing nodes and each and every node 
can contain many processors with different computing power 
and also heterogeneous in nature. A node may vary with other 
nodes in total number of users in local as well as in network, 
different capacity of memory, resources and other services. 
Each and every node will also have its local load and remain-
ing part can only be spared as global resource.  

In our context to constraint ourselves we take the jobs are 
in full, each node has single processor and sites are intercon-
nected with message communication. Communication time 
depends on the transmission delay, bandwidth and size of the 
messages. Assuming our application model, we limit our as-
sumptions that each and every application is independent, 
they do not require order of execution, they are computational 
intensive, no consideration in operating system level and no 
support of job migration and resource replication. Each and 
every task has different computation and communication time 
depends upon its own nature. 

3  LOAD BALANCING IN GRID 
Load balancing is a technique which enhances the usage of 
resources, utilizing parallelism, exploiting the improvisation 
of throughput and reduces the response time through the dis-
tribution of the applications in an appropriate fashion. Each 
and every load balancing method is designed to spread the 
load on resources equally and maximizes their utilization at 
the same time minimizes the total task execution time. Selec-
tion of optimal set of jobs for transfer has a significant role on 
the efficiency and effectiveness of the load balancing method 
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as well as grid resource utilization.  
Load balancing algorithms are classified into many catego-

ries based on the criteria.  They are like static or dynamic, 
sender or receiver initiated, global or local strategies,  central-
ized or decentralized, co-operative or non-cooperative, Adap-
tive or non-adaptive and one time assignment or dynamic 
reassignment [12]. In static algorithms, the decisions are made 
at compile time where requirements are initially estimated. In 
dynamic load balancing, load balancer allocates/re-allocates 
resources at runtime and uses the system-state information to 
make its decisions. Adaptive load balancing algorithms adapt 
their activities by dynamically changing their parameters, pol-
icies and system state. 

Methods used in load balancing can be divided into three 
classes namely centralized, decentralized or distributed and 
hierarchical. In a centralized approach, all jobs are submitted 
to a single schedule which is responsible for scheduling the 
jobs on the available resources. Since all the scheduling infor-
mation is available at once, the scheduling decisions are opti-
mal but this is not very scalable.  

In a decentralized model there is no central scheduler and 
scheduling is done by the resource requesters and owners in-
dependently. This approach is scalable, distributed in nature, 
and suits vey well for present grid environment. But individu-
al schedulers should cooperate with each other in scheduling 
decisions and the schedule generated may not be the optimal 
schedule. This category of load balancing is perfect for peer-to-
peer architectures and dynamic environments.  

In a hierarchical model, the schedulers are organized in a 
hierarchy. High level resource entities are scheduled at higher 
levels and lower level smaller sub-entities are scheduled at 
lower levels of the scheduler hierarchy. This model is a com-
bination of the above two models. 

In centralized load balancing, algorithms are used in three 
approaches. In the classical approach Random, Round-Robin, 
MET (Minimum Execution Time), MCT (Minimum Comple-
tion Time), Min-Min, Max-Min and Sufferage methods are 
used. In agent-based approach, intelligent agents and multi-
agent approach, agent-based Grid management infrastructure 
with performance-driven task scheduler and agent with genet-
ic algorithm-based scheduler are attempted. In Evolutionary 
Computing Approach, Genetic Algorithms, Tabu search, Ant 
Colony Optimization and Particle Swarm Optimization are 
used. 

In the decentralized load balancing, again the algorithms 
are used in three approaches. In the classical approach, sender, 
receiver and stable symmetrically initiated adaptive algo-
rithms, State Broadcast Algorithm (STB) and Poll when Idle 
Algorithm (PID) are used. In Ant Colony Optimization Ap-
proach, Ant Colony optimization, Anthill Framework (Messor 
system) and Multiple Ant Colony Optimization (MACO) are 
used. In the agent based approach, multi-agent systems with 
forward and backward routing are used. In the routing, ABC 
(Ant-Based Control system), Ant-Net (routing problem in 
datagram networks), ASGA (ant colony systems with genetic 
algorithm) are used. In another approach, Job Migration is also 
used with load balancing. 

Genetic Algorithm and Tabu search are evolutionary 
search techniques to find solutions to optimization and search 
problems. These techniques are inspired from evolutionary 
biology and apply features such as inheritance, mutation, se-
lection, and crossover. They have been proved to work better 
compared to classical algorithms such as Min-min, Max-min 
and Sufferage in terms of time makespan, which is the total 
completion time for all tasks. Each of these three algorithms 
selects a job from a set of tasks, calculates its completion time 
on each existing processor and assigns it to a resource itera-
tively.  

In the Ant-Colony approach each job submitted to the Grid 
invokes an ant and the ant searches through the network to 
find the best node to deliver the job to. Ants leave information 
related to the nodes they have seen as pheromone in each 
node which helps other ants to find lighter resources more 
easily. In the particle swarm approach, each node in the net-
work is considered to be a particle and tries to optimize its 
load locally by sending or receiving jobs to and from its 
neighbors. This process being done locally for each node, re-
sults in a move toward the global optima in the overall net-
work. 

In agent based approach, load balancing is carried out with 
combination of intelligent agents and multi-agent approaches 
[13]. At the global grid level, each agent is acting as a high-
level representative of a grid resource and acts as a service 
provider of high performance computing power. Agents are 
organized into a hierarchy by assigning different roles. There 
are three roles in the system: Broker, Coordinator and Agent. 
They cooperate with each other to discover available resources 
for tasks using service advertisement and discovery. The hier-
archical model can help when scalability problem arises. 
When the number of agents increases, the hierarchy can help 
in processing many activities in a local domain and does not 
have to rely on some central agents. Still their architecture of 
agents incorporates a central agent which coordinates the hi-
erarchy at the highest level. 
 
3.1 Heuristic and Evolutionary Methods 
The following heuristic and evolutionary algorithms are dis-
cussed in detail towards their functionality and suitability for 
efficient and effective load balancing. 

  
3.1.1 Genetic Algorithm 
A Genetic Algorithm is a biologically inspired optimization 
and searching technique. It mimics the behavior of evolution 
of simple, single celled organisms. It is particularly useful in 
situations like the solution space to be searched is huge, mak-
ing sequential search, computationally expensive and time 
consuming. GA is a type of guided random search technique, 
able to find efficient solutions which are not absolute optimal 
but use reasonable amount of time and resources within the 
constraints in a variety of cases. Effectiveness or quality of a 
GA can be judged by its performance against other historical 
known techniques in terms of solutions found, and time and 
resources used to find the solutions. GA has shown extremely 
effective in problems ranging from optimizations to machine 
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learning. 
Some common terminologies used in GA are explained be-

low. The relationships between various units used in the GA 
system are shown in Fig.1. 

 
 
 
 

 
 
 

Fig.1. Genetic Algorithm System. 
 
Population: A collection of chromosomes. 
Chromosome: A collection of genes. Represents a solution or a 
parameter set for the particular problem. 
Gene:  A basic entity in GA, a single gene represents a par-
ticular feature or Characteristic of individuals in the GA sys-
tem. 
Allele:  A value associated with a gene. Example: biologically 
speaking, a gene for eye color may have an allele value of 
'brown'. 
Locus: The position of a gene in the chromosome. 
 
The gene in GA takes on a value from an alphabet of size r € 
Ζ+. Each chromosome / string then consists of a series of n 
genes: 

s = {b1,b2,… ,bn}                      (1) 
resulting in a solution space of size rn. The most common and 
generally most effective string representation is the binary 
alphabet {0, 1}. In this case, each gene takes on a possible val-
ue of 0 or 1: 

bi € {0,1} i = 1,2, … , n            (2) 
where by the solution space is now of size 2n. In most cases, 
the use of binary gene results in longer chromosome length. 
At the same time, this results in more genes available to be 
exploited by the GA, resulting in better performances in many 
cases. The evolution of the GA population from one genera-
tion to the next is usually achieved through the operators: 
selection, crossover, and mutation. 
 
3.1.1.1     Selection 
Selection is the process of selecting chromosomes from the 
current generation for processing to the next generation. 
Highly fit chromosomes are usually given a higher chance of 
being selected more often, thereby producing more offspring 
for the next generation. Some common techniques to achieve 
this objective include: 
• Fitness-proportionate selection. 
• Rank selection. 
• Tournament selection. 
• Elitism; this method is used in conjunction with the other 

selection methods. 
 
3.1.1.2 Crossover 
Once chromosomes are selected, crossover is applied to the 
chosen individuals. The crossover operator usually operates 

on two individuals / parents to produce two children. It en-
sures that characteristics of each parent are inherited in the 
children. Common crossover methods that are readily used 
for binary gene include one-point, two-point and uniform 
crossover. Most appropriate crossover method is selected de-
pends on the particular problems, chromosome encoding and 
fitness function used.  

In uniform crossover gene exchanges can occur at any posi-
tion on the chromosome. For example, if we have two parents 
000000 and 111111, then to produce two offspring we go 
through each of the six genes of one of the parent. For each 
gene, there is a probability that this gene will be exchanged 
with the other parent. As such, if an exchange happens at posi-
tion 2 and 5, then the two offspring produced will be 010010 
and 101101. 
 
3.1.1.3 Mutation 
While the crossover operator works on a pair or more of 
chromosomes to produce two or more offspring, the mutation 
operator works on each individual offspring. The mutation 
operator helps prevent early   convergence   of the   genetic 
algorithm by   changing   characteristics of chromosomes in 
the population. Such changes in the chromosomes also results 
in the GA's ability to jump to far away solutions, hopefully to 
unexplored areas of the solution space. The mutation rate of 
the chromosomes should not be set too high, as too much mu-
tations has the effect of changing the guided random search of 
the GA to a purely random search. 
 
3.1.1.4    Genetic Algorithm Framework 
The GA used for efficient solutions to the load balancing prob-
lem, considering the points discussed above, is shown below. 
 
Algorithm 1   (Genetic Algorithm for Load Balancing): 
 
Input :  Parameters   for   the   GA. 
Output: Population of solutions, P. Each of these solutions can 

be   used   as   a task   schedule. 
Begin 

Initialize the population, P. 
Evaluate P. 
While stopping conditions not true do 

Select Elite in P consisting of k (1 < k < popu-
lation size) best individuals. 
Apply Selection from individuals in P to cre-
ate Pmating, consisting of (population size - 
k) individuals. 
Crossover Pmating. 
Mutate Pmating. 
Copy  the  whole  individuals  of  Pmating  to  
P,  replacing  the  worst (population size - k) 
individuals in P. 
Evaluate P. 
If escape condition true  
      Then Escape. 

 End While 
End. 
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The parameters for the GA are shown in Table 1. First, a 
fixed number of tasks are considered for scheduling. This is to 
stop the scheduler from scheduling an excessive number of 
tasks at once. This also limits the computation time required 
by the scheduler. In this study, a window size of eight times, 
the number of nodes available is used. The window represents 
all the tasks in the queue that will be considered for schedul-
ing. If the number of tasks in the queue is less than the win-
dow size then TaskSet consists of all the tasks in the queue. 
Otherwise TaskSet consists of all the tasks in the window. 
Note that a task remains in the scheduler's queue until it is 
completed. Tasks that have been sent or are executing on 
computing nodes still remain in the queue, as they may be re-
allocated to another node. 

 
TABLE 1 

GENETIC ALGORITHM PARAMETERS. 
Window size w 8 × (number of nodes) 
Population m  2 × (size of TaskSet) 
Best cloned σ  5% of m 
Tournament selection ps  0.8 
Two-point crossover pc  0.8 
Gene mutation pm  0.0005 
Evolution period T  200 
Max stale period Tstale  20 
Escape mutation pmm  0.2 

 
3.1.2 Tabu Search 

Tabu search is also an evolutionary algorithm through its 
intimate relation to scatter search and path relinking [10],[11]. 
Tabu Search provides compete solutions for numerous com-
putational studies. The improvements can be quite dramatic 
for some cases. It moves from one solution to a neighboring 
solution. In choosing the next solution, Tabu Search uses 
memory and extra knowledge endowed about the problem. A 
basic Tabu Search algorithm is shown below. 
 
Algorithm 2 (Basic Tabu Search for Load Balancing): 
 
Input :  Parameters for the TS. 
Output:  A feasible solution to the problem. 
Begin 

Generate an initial solution s. 
While stopping conditions not true do 

Select next solution neighboring s. 
Update memory. 

End While 
End 

 
For a given problem to be solved using Tabu Search, three 

information need to be defined: a set V of feasible solutions, a 
neighborhood structure N(s) for a given solution s € V, and a 
tabu list, TL. As shown in Algorithm 2, an initial solution s is 
chosen from the set of feasible solution V. This initial solution 
is usually chosen in a random fashion. Once an initial solution 
is chosen, the algorithm goes into a loop that terminates when 
one or more of the stopping conditions are met. In the next 

step of Algorithm 2, the next solution si+1 is selected from the 
neighbors of the current solution si, si+l € N(si). In a basic Ta-
bu Search, all possible solutions s € N(si) is considered, and 
the best solution is chosen as the next solution si+1. The use of 
such selection rule may result in the algorithm going in cir-
cles. At the very worst, the algorithm will go back and forth 
between two solutions. To avoid this, memory is incorporated 
into Tabu Search. 
 
3.1.2.1     Tabu list 
The algorithm keeps a list of tabu solutions in a memory. The 
length of this tabu list may be varied, and a longer list will 
prevent cycles of greater length k. However, it may be imprac-
tical to incorporate such memory. Simpler type of memories is 
usually incorporated to remember the last k moves made. A 
move for a solution si can be viewed as changes to get to a 
new solution si+1 € N(si) and reverse also. The tabu search can 
then keep a tabu list of the last k reverse moves made, and 
avoid making these moves. 

 Such a list is not a perfect replacement for a solution list. 
The use of a move list does not guarantee that no cycle of 
length < k will occur. In other cases, its use results in a restric-
tive search pattern - an unvisited solution may be ignored be-
cause a move to that solution is in the tabu list. Sometimes the 
use of a move list results in both a loss of information and a 
more restrictive search pattern. To partially overcome the re-
striction imposed by using a move list, a tabu search usually 
incorporates aspiration conditions. If a tabu move leads to a 
solution that is better than the best solution found so far, then 
it should be selected. The important feature of tabu search is 
search intensification and diversification. For this purpose, a 
more elaborate memory structure needed to take into account 
of recency, frequency, and quality of solutions and moves 
made so far. 
 
3.1.2.2 Search Intensification 
In search intensification, exploration is concentrated on the 
vicinity, or neighbors of solutions that have historically been 
found to be good. During this process a modified fitness func-
tion is used to encourage moves that have historically been 
found to be good. Reward value may be added to the fitness 
function so that certain moves or solution's features become 
more attractive. Search intensification is usually carried out 
over a few numbers of iterations. If the process is not able to 
find a better solution than the best one found so far, a search 
diversification is usually carried out. 
 
3.1.2.3 Search Diversification 
The search diversification process attempts to spread out the 
search process to unvisited regions, and encourages moves 
that are significantly different from those that have been 
found. For this purpose, a modified fitness function is used 
with penalties applied to certain moves. For example, penal-
ties may be given to frequently made moves, or common so-
lution's features. 
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3.1.2.4    Tabu Search Framework 
The Tabu Search implementation for the grid load balancing 
problem is graphically depicted in Fig.2. In the initialization 
phase, a starting solution is created. To this end, a Sufferage 
algorithm is used to generate the starting solution and the 
tabu search algorithm explores the solution space from this 
starting solution. During the exploration process, the best 
move is selected, and is then put into a tabu list, to prevent 
excessive cycling of solutions. Moves table is used instead of 
solutions table due to the impracticality of using solutions 
table. 

 

 
Fig.2. Tabu Search Procedure 

 
Here, the tabu list keeps a record of the movement of a task 

to a particular computing node. Moves are kept in the tabu list 
for a period of between TLmin and TLmax. The exact period 
for each move is chosen randomly and uniformly from 
[TLmin, TLmax]. Further to this is an aspiration condition, 
whereby a move that's tabu will be accepted if it improves the 
best solution found so far. To complement the exploration 
process, search intensification and diversification are imple-
mented. The inclusion of each type improves the performance 
of tabu search for the load balancing problem. 

In search intensification, a modified fitness function is used 
to decide the next move to be made. In this implementation, 
moves with a history of good score are rewarded, so that such 
moves are likely to be chosen during the intensification peri-
od. To do this, a score is kept for each move made: the best 
move for the current iteration that gives a better solution than 
the solution from the previous iteration is considered good; 
the difference in value is then recorded. The reward for a 
move is then the average of the calculated sum. At the start of 
this intensification period, the tabu list is reset, and the period 
that moves stay in the tabu list is shortened to [TLI, min, TLI, 
max]. The search intensification is triggered when the best 
solution found is repeated. This intensification procedure 
would normally last for TI iterations. 

Two types of search diversification procedure can be im-
plemented which are mild and hot. A modified fitness func-
tion is again used in the mild diversification procedure. Here, 

frequently made moves are penalized, so that such moves are 
less likely to be chosen during this procedure. The ratio of the 
move to the total moves performed is calculated. The penalty 
for a move is then calculated as the fitness value ratio. This 
procedure is invoked when the search intensification is not 
able to improve the solution (Fig.2). The procedure lasts for a 
maximum period of TDm. 

Finally, the hot diversification procedure is global in na-
ture, and is executed when the solution found is not improved 
within a period Tstale. The procedure resets the tabu list, and 
a new random solution is generated. The move counts used in 
the mild diversification procedure are also reset. In the event 
that the conditions for search intensification and hot diversifi-
cation are both satisfied, the search intensification takes prec-
edence. Further, at the beginning of each search intensification 
and mild diversification, the countdown for Tstale is reset. 

Each of the search intensification and mild diversification 
procedure would normally last for TI and TDm respectively. 
However, the procedure will exit and go back to normal ex-
ploration if a better solution is found. Finally, a global stop-
ping condition is used to stop the tabu search. Here, the tabu 
search can be stopped after 200 iterations. An iteration can 
include a normal exploration, a search intensification, or a 
search diversification. Table 2 shows the tabu search parame-
ter values used in the experiment: 

 
TABLE 2 

TABU SEARCH PARAMETERS. 
Parameters  Values 
Tabu period TLmin  5 
Tabu period TLmax  10 
Tabu period TLI,min  2 
Tabu period TLI,max  5 
Intensification period TI  13 
Diversification period TDm  13 
Max stale period Tstale  20 

 
3.1.3 Ant Colony Optimization Algorithm 

Ants are social beings with structured colonies based on 
their individual behavior. For computational purposes, it is 
relevant that the way they find paths between food sources 
and anthill. While walking ants place some amount of phero-
mone on the ground. Ants smell pheromone and when choos-
ing their way, they tend in probability to the paths marked 
with stronger pheromone concentrations. When the time pass-
es, the pheromone concentration decreases. Repeating the 
same behavior, they compose optimized trails that are dynam-
ically defining and they use to find food sources and their 
nest. This environment is very similar to the Grid and can be 
used in a very direct way. 
 
Algorithm 3 (Ant Colony Optimization for Load Balancing): 
 
Input :  Parameters for the ACO. 
Output:  Optimal solution to the problem. 
 
Begin 
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Initialize the pheromone 
While stopping criterion not satisfied do 

Position each ant in a starting node 
Repeat 

For each ant do 
Chose next node  
by applying the 
state transition rate 

End For 
Until every ant has build a solution 
Update the pheromone 

End While 
End 

 
Each edge between node (r, s) has a distance or cost associ-

ated δ(r, s) and a pheromone concentration τ (r, s). Equation 
(1) is the state transition rule, that is a probabilistic function 
for each node u, that has not been visited by each placed ant 
on node r. 

 
We also have there the η(r, s) that is the reverse tau function. 
 

The parameter β determine the relevance of the phero-
mone concentration compared with the distance or cost, δ(r, s) 
, and always β > 0.  

The pheromone concentration on (3) is applied in each 
edge of the systems, for a global pheromone updating rule. 

 
 
 

 
τ (r, s) = (1 − α)τ (r, s) + ΣΔτk(r,s) -------------- (4) (4) 
Where α is the pheromone evaporation factor between 0 and 
1. And Δτk(r, s) is the reverse of the distance or cost done by 
ant k, if (r,s) is its path and is 0 if it is not in the path. 

 
The ACO-Grid flavour modified from the original ACO is as 

follows 
• Every Grid request is an ant, when it finds its file ob-

ject, the ant died. 
• The Grid replies routing is done with traditional 

methods. 
• ACO-Grid does not use global updating. 
• Every time a request is processed on a Grid site, in-

formation is updated for all the site connections.  
• The Grid distance or cost is defined on (5) as a func-

tion of network latency lt and bandwidth bw.  

δ(r, s) = ltr,s * c1 + (M AXBW  − bw r,s) ∗  c2   ----(5) 
On (5) c1 and c2 are coefficients which balance the relative 

relevance between latency and bandwidth, they will fit with 
the bandwidth and latency values of the specific Grid infra-
structure, and also fit with their measure relationship (ms. and 
MB/s.). For example: c1 = 1 and c2 = 0.2. Latency is always a 
constant, and bandwidth has a variable behaviour depending 
on sockets allocations and number of network request in a 
specific moment. MAXBW is the highest bandwidth of the 
Grid infrastructure. ACO-Grid realizes the performance due to 
its features like no control traffic, distributed optimization, 
localization and selection services, and autonomous manage-
ment of each node [14]. 
 
3.1.4 Modified Ant Colony Algorithm 
The modified ant colony optimization is used to solve large 
complex problems [15]. It requires grid scheduling to achieve 
high performance which is a complex problem. Hence better 
scheduling in grid systems can be achieved using heuristic 
approaches. The basic Ant algorithm involves Transition 
Probability and Pheromone Updating Rule. The modified ant 
colony algorithm has changed the basic Pheromone updating 
rule of original ant colony algorithm to improve the perfor-
mance. The improved pheromone updating rule is given by 
(6). 
 
τij(t)new=[{(1-)/(1+ρ)}*τij(t)old]+[{ρ/(1+ρ)}* ∆τij(t)] -------- (6) 

 
Where 
τij(t) - Trail intensity of the edge(i,j). 
ρ - Evaporation rate. 
∆τij(t) - Additional pheromone when job moves from 
scheduler to resource. 
 

The ants build a solution with the information stored in the 
pheromone trail and the best heuristic function.  The probabil-
ity of selecting job j to schedule next is given by the following 
(7). In the equation, α defines the relative weight given to the 
pheromone information and β defines the relative weight giv-
en to the heuristic information. If α is set to zero, then heuristic 
information is only used and the ants effectively perform a 
probabilistic search. If β is set to zero, pheromone information 
is only used. 
 

The probability selection is obtained as 
 
Pij(t)k = [τij(t)]α*[ηij(t)]β/ΣuЄallowed(k) [τiu(t)]α*[ηiu(t)]β 
………. (7) 
 

The modified ant colony algorithm is as follows: 
 
Algorithm 4 (Modified Ant Colony Optimization for Load 
Balancing): 
 
Input : Parameters for the ACO. 
Output:  Improvised solution to the problem. 
 
 
Begin  

Pk(r,s)= 
[τ(r,s)][η(r,s)]β 

     ………..    (3) Σ[τ(r,s)][η(r,s)]β 

Where,  
Pij(t)  -Probability to move along the path (ij).  
τij(t) -Trail intensity of the edge(i,j). 
ηij(t)    -Visibility (1 / distanceij ). 
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Initialize the pheromone  
While stopping criterion not satisfied do 

Position each ant in a starting node  
Repeat  

For each ant do 
Chose next node by applying the 
state transition rate  
Pij(t)k = [τij(t)]α*[ηij(t)]β 
/ΣuЄallowed(k) [τiu(t)]α*[ηiu(t)]β  
End For 

Until every ant has build a 
 solution    
Update the pheromone  
τij(t)new=[{(1-)/(1+ρ)}*τij(t)old] + 
[{ρ/(1+ρ)}*∆τij(t)] 

End while  
End   
 
3.1.5 Particle Swarm Optimization 
Particle Swarm Optimization technique is also an evolutionary 
algorithm employed in many optimization and search prob-
lems due to its simplicity and ability to tackle these problems 
successfully [16],[17],[18],[19]. PSO optimizes an objective 
function by iteratively improving a swarm of solution vectors, 
called particles, based on special memory management tech-
nique. Each particle is modified by referring to the memory of 
individual swarm’s best information. Due to the collective 
intelligence of these particles, the swarm is able to repeatedly 
improve its best observed solution and converges to an opti-
mum. 
 
Algorithm 5 (Particle Swarm Optimization for Load Balanc-
ing): 
 
Input :  Parameters for the PSO. 
Output:  Optimal solution to the problem. 
 
Begin 

Initialize the swarm from the solution space  
Repeat 

Evaluate fitness of individual particles  
Modify gbest, pbest and velocity  
Move each particle to a new position. 

Until convergence or a stopping condition is satisfied. 
End  
 
 
 
 
The working principle of PSO is shown in the Fig.3 
 

 
Fig.3. Flow chart for Particle Swarm optimization 

 
3.1.5.1 PSO Algorithm 
Particle Swarm Optimization is an algorithm modeled on 
swarm intelligence which finds a solution to an optimization 
problem in a search space, or models and predicts social be-
havior in the presence of objectives. The PSO is a stochastic 
and population-based computer algorithm which evaluates a 
solution in the form of a fitness function. A communication 
structure or social network is defined with nodes with their 
neighbors to interact with each other. Then a population of 
individual nodes defined as random guesses at the problem 
solutions is initialized. These individuals are candidate solu-
tions which are known as the particles. An iterative process is 
carried out to evaluate the fitness to improve these candidate 
solutions is set in motion and remember the location where 
they had their best success. The individual's best solution is 
called the particle best (pbest) or the local best. Each particle 
makes this information available to their neighbors. They are 
also able to see where their neighbors have had success or not. 
Movements through the search space are guided by these suc-
cesses up to the convergence of their population on a problem 
solution by the end of the trial. 

Each particle represents a candidate solution which is 
based on the position of a particle is influenced by the best 
position visited by itself by its own experience and the posi-
tion of the best particle in its neighborhood by the experience 
of neighboring particles. When the neighborhood of a particle 
is the entire swarm with the best position then it is the global 
best (gbest) of the particle which is shown in Fig.4. The per-
formance of each particle measured using a fitness function 
varies problem to problem. Each Particle in the swarm is rep-
resented by its current position and velocity. 
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Fig.4. Flow chart for Particle Swarm optimization for Grid En-

vironment 
 

3.1.6 Enhanced Particle Swarm Optimization 
Optimal task scheduling will enable the effective balancing of 
load. Representing a solution for task scheduling is one of the 
most important issues in grid environment PSO performance 
is tied with the solution representation. It is defined one parti-
cle as a possible solution in the population. The dimension n 
corresponds to n tasks. The position vector of each particle 
makes transformation about the continuous position. The 
Smallest Position Value (SPV) rule is used to find a permuta-
tion corresponding to the continuous position xik. 

For the n tasks and m resources problem, each particle rep-
resents a reasonable scheduling scheme. The position vector 
xik has a continuous set of values and it is the position value 
of ith particle with respect to the nth dimension. sik is the se-
quence of task of ith particle in the processing order. 

Then the operation vector rik is defined by the equation, 
R= sik mod m. The Initial population of particles is construct-
ed randomly for PSO algorithm. The initialized continuous 
position values and velocities are generated by the formula, 

Xk0  = xmin + (xmax - xmin) * r ----- Eq (8) 
where, xmin = - 0.4 and xmax = 4.0 and r is the random num-
ber between 0 and 1. 

Vk0  = Vmin + (Vmax - Vmin) * r ----- Eq (9) 
where, Vmin = - 0.4 and Vmax = 4.0 and r is the random 
number between 0 and 1. 
 
With these parameters enhanced PSO algorithm is described 
below.  

 
Algorithm 6 (Enhanced Particle Swarm Optimization for Load 
Balancing): 
 
Input :  Parameters for the PSO. 
Output:  Improvised solution to the problem. 

 
Begin 

Initialize the contents for this PSO algorithm.  
Define the active resource and the list of tasks.  

Set the dimension as the number of tasks.  
Initialize position vector and velocity vector of each 
particle randomly. 

Xk0  =  xmin + (xmax - xmin) * r 
Vk0  =  Vmin + (Vmax - Vmin) * r 

Apply the SPV rule to find the permutation for the 
tasks.  
Evaluate each particle in the swarm using an objec-
tive function.  
Find the best fitness value and set the global best 
value. 

 
Repeat 

Update iteration variable. 
Update inertia weight.  
w = wend + (wstart  - wend) * β 
where, β = (1 / 1 + (α x / xmax) 
Update velocity.  
Vik+1 = wVik +c1 rand1 ( ) x (pbes-
ti-sik) + c2 rand2( ) x (gbest-sik) 
and update velocity of each particle. 
Update Position. 
Sik+1 = Sik + Vik+1 
and update position of each particle. 
Apply the SPV rule to find the permutation. 
Update personal best, by evaluating the par-
ticle. 
Update global best. 

Until number of iteration exceeds the maximum 
number of iteration 

End 
 
3.2 Agent based Approach 
Software agents are used as powerful high-level abstraction 
for modeling of complex software systems and pure decen-
tralization. This approach is used for building large-scale dis-
tributed systems with highly dynamic behavior. Agents are 
used for the implementation of resource management system 
for meta and grid computing. Each agent is responsible for 
resource scheduling and load balancing across multiple hosts 
/ processors in a local grid is enabled with multiple agents. 
The agent couples application performance data with iterative 
heuristic algorithms to dynamically minimize task makespan 
and host idle time, whilst meeting the requirements for each 
task. The algorithm is based on an evolutionary process which 
will absorb system changes like addition or deletion of tasks 
and changes in the number of processors available in a local 
grid. 

At the global level, each agent is a representative of a grid 
resource and acts as a service provider of high performance 
computing power. Agents are organized into a hierarchy and 
cooperate with each other to discover available grid resources 
for tasks using a peer-to-peer mechanism for service adver-
tisement and discovery. 
 
 
3.2.1. Agent Structure 
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Each agent is implemented for managing hosts / processors of 
a local grid resource and scheduling incoming tasks to achieve 
local load balancing. Each agent provides a high-level repre-
sentation of a grid resource and characterizes these resources 
as high performance computing service providers. The archi-
tecture of each agent is illustrated in Fig.5 and explained be-
low. 

 
Fig.5. Agent Architecture. 

 
• Communication Layer. Agents in the system must be 

able to communicate with each other or with users us-
ing common data models and communication proto-
cols. This layer provides an agent with an interface to 
heterogeneous networks and operating systems.  

• Coordination Layer. This layer decides how the agent 
should act on the request according to its own 
knowledge. If an agent receives a service discovery 
request, it must decide whether it has related service 
information.  

• Local Management Layer. This layer performs func-
tions of an agent for local grid load balancing. This 
layer is responsible for submitting local service in-
formation to the coordination layer for agent decision 
making.  

 
 
3.2.2. Agent Hierarchy 
Agents are organized into a hierarchy in a higher level global 
grid environment which is shown in Fig.6. The broker is an 
agent that heads the whole hierarchy. A coordinator is an 
agent that heads a sub-hierarchy. A leaf-node is actually 
termed an agent. The broker and coordinators are also agents 
which differentiate themselves with special positions in the 
hierarchy. All the agents have the same functionality despite 
their different positions. The broker does not have any more 
priorities than coordinators or agents. The hierarchy of homo-
geneous agents provides a high-level abstraction of a dynamic 
grid environment. New agents will join the hierarchy or exist-
ing agents will leave the hierarchy at any time. The hierarchy 
exists only logically and each agent can contact others as long 
as it has their identities. 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 

Fig.6. Agent Hierarchy. 
 

The hierarchical model can address the problem of scalabil-
ity to some extent. When the number of agents increases, the 
hierarchy may lead to many system activities being processed 
in a local domain through which it may scale well and does 
not need to rely on central agents. An agent can act as all ab-
stractions like client, server and match maker, which provides 
a simple and uniform abstraction of the functions in the grid 
management. The service information provided at each local 
grid resource can be advertised throughout the hierarchy and 
agents can cooperate with each other to discover available 
resources. 

In this study, local grid load balancing is performed in each 
agent using AI scheduling algorithms which is similar to that 
of AppLeS, Ninf and Nimrod. The main advantage of GA 
scheduling used is the quality of service (QoS) and multiple 
performance metrics support. This work also focuses on the 
cooperation of local grid and global grid levels of management 
and scheduling. Globus toolkit, is becoming a standard for 
grid service and application development, which is based on 
web services protocols and standards. Condor-G and Nim-
rod/G use the Globus toolkit to integrate with the grid com-
puting environment though a centralized control structure is 
applied in both implementations. Legion is developed using 
an object-oriented methodology that provides similar func-
tionalities to the Globus. Agents are used to control the query 
process and to make resource discovery decisions based on 
internal logic. 

Agent-based grid management is also used in JAMM and 
NetSolve, where centralized broker/agents architecture is de-
veloped with peer-to-peer service advertisement and discov-
ery to achieve global grid load balancing. The agent-based 
approach can provide a clear high-level abstraction of the grid 
environment that is extensible and compatible for integration 
of future grid services and toolkits. 

In this work, GridSim toolkit has been used for exercising 
all the algorithms under simulation towards effective load 
balancing and better utilization of Grid. 

4  GRIDSIM: GRID MODELING AND SIMULATION TOOLKIT 
The GridSim toolkit provides a comprehensive facility for 
simulation of different heterogeneous resources, users, appli-
cations, resource brokers, and schedulers. It can be used to 
simulate application schedulers for single or multiple adminis-
trative domains and distributed computing systems such as 
clusters and grids. Resource brokers perform resource discov-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                                    89 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

ery, selection, and aggregation of a diverse set of distributed 
resources for an individual user. Each user has his own pri-
vate resource broker and it can be targeted to optimize for the 
requirements and objectives of its owner. Whereas schedulers 
have complete control over the policy used for allocation of 
resources. All users need to submit their jobs to the central 
scheduler, which can be targeted to perform global optimiza-
tion such as higher system utilization and overall user satisfac-
tion depending on resource allocation policy or optimize for 
high priority users. 
 
4.1 Features 

Salient features of the GridSim toolkit include the fol-
lowing: 

• It allows modeling of heterogeneous types of re-
sources. 

• Resources can be modeled operating under 
space- or time -shared mode. 

• Resource capability can be defined in the form of 
MIPS. 

• Resources can be located in any time zone. 
• Leisure time can be mapped on resource’s local 

time to model local workload. 
• Resources can be booked for advance reservation. 
• Applications with different parallel application 

models can be simulated. 
• Application tasks can be heterogeneous and they 

can be CPU or I/O intensive. 
• No limit on the number of application jobs that 

can be submitted to a resource. 
• Multiple user entities can submit tasks for execu-

tion simultaneously in the same resource, which 
may be time or space-shared. This feature helps 
in building schedulers that can use different mar-
ket-driven economic models for selecting services 
competitively. 

• Network speed between resources can be speci-
fied. 

• It supports simulation of both static and dynamic 
schedulers. 

• Statistics of all or selected operations can be rec-
orded and analyzed using GridSim statistics 
analysis methods. 

 
 
4.2 System Architecture 

A layered and modular architecture for grid simula-
tion is employed to leverage existing technologies and manage 
them as separate components [20]. A multi-layer architecture 
and abstraction for the development of GridSim platform and 
its applications is shown in Fig.7.  

• The first layer is concerned with the scalable Java’s in-
terface and the runtime machinery, called Java Virtual 
Machine (JVM), whose implementation is available 
for single and multiprocessor systems including clus-
ters.  

• The second layer is concerned with a basic discrete-
event infrastructure built using the interfaces provid-
ed by the first layer.  

• The third layer is concerned with modeling and simu-
lation of core Grid entities such as resources, infor-
mation services, application model, uniform access in-
terface and primitives application modeling and 
framework for creating higher level entities. The 
GridSim toolkit focuses on this layer that simulates 
system entities using the discrete-event services of-
fered by the lower-level infrastructure.  

• The fourth layer is concerned with the simulation of 
resource aggregators called grid resource brokers or 
schedulers.  

• The final layer focuses on application and resource 
modeling with different scenarios using the services 
provided by the two lower-level layers for evaluating 
scheduling and resource management policies, heu-
ristics, and algorithms. 
 

 
Fig.7. A Modular Architecture for GridSim Platform 

and Components. 
 

5 RESULTS FROM LITERATURE 
In the first set of experiment, the genetic algorithm (GA), tabu 
search (TS), along with Best-fit, Min-min, Max-min, Sufferage, 
and Random algorithms were applied to ten different net-
works and applications with the characteristics mentioned 
earlier [21]. The relative makespan percentages are calculated 
from the geometric mean of the makespans as obtained from 
each algorithm. From the graph (Fig.8) it can be seen that tabu 
search (TS) has the lowest makespans, followed closely by 
genetic algorithm (GA). Best-fit and Random gives the worst 
results of all the seven algorithms considered. Best-fit does not 
perform as well because it does not re-schedule tasks once 
they have been assigned, which is essential with varying 
background workloads in the computing nodes. We can see 
TS has a lower geometric mean of the maxspan, much lower 
average percentage deviation, and higher average rank than 
the other algorithms. Both the GA and TS has average per-
centage deviation that is at least two times smaller than the 
other algorithms (Fig.9). TS also have an average rank com-
pared with other algorithms except GA. 
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Fig.8. Results for GA, TS and other associated basic algorithms 
 

 
Fig.9. Effect of scheduling period on the geometric mean of the 

makespans 
 

The modified Ant colony algorithm is a best suited method 
for tracking problem sets.  The above approach simulated us-
ing GridSim toolkit and was found to be working efficiently 
and effectively [15]. Experimental test carried out for a varied 
range of input set to ascertain the efficiency of the algorithm. 
From the results it is clearly evident that the modified Ant 
colony algorithm offers better optimization a very fast rate. 
Table 3 shows the amount of tasks considered for each period 
of execution. The results are tabulated for interval of every 10 
tasks, starting from 10 tasks to 100 tasks respectively. 

 
 

TABLE 3 
 COMPARISON BETWEEN EXISTING AND MODIFIED 

ACO WITH NO. OF TASKS AND PERIOD OF EXECUTION 
The following graph (Fig.10) shows the level of improve-

ment with modified approach when compared with normal 
ACO.  

 

 
Fig.10. Comparison between Existing and Modified ACO with 

No. of tasks and period of execution 
 

PSO and enhanced PSO algorithms are simulated in ALEA 
Grid simulation tool kit [22]. Experiments have been carried 
out with 5 iterations with the above said parameters. The ex-
perimental results show that the enhanced PSO algorithm is 
able to get the better schedule as shown in Table 4.  
 

TABLE 4 
 COMPARISONS BETWEEN EXISTING AND ENHANCED 
PSO METHODS WITH ITERATIONS AND INERTIA VAL-

UES 
 

 
 
 
 
 
 
 
 
 

 
The following graph (Fig.11) shows comparisons modified 

PSO and existing PSO method based on iterations and inertia 
values. The curve obviously shows the improvement. 
 

 
 

Fig.11. Comparison between iterations and inertia value. 
For the agent based approach, experiments were conduct-

Num-
ber of 
tasks 
in-

volved 

Modified ACO 
(% of time taken 

for execution ) 

ACO 
(% of time 

taken for exe-
cution) 

10 0.32 0.59 
20 0.72 0.81 
30 0.42 0.62 
40 0.63 0.75 
50 0.81 0.89 
60 0.49 0.70 
70 0.67 0.80 
80 0.62 0.76 
90 0.50 0.66 
100 0.73 0.84 

ITERATION PSO Meth-
od 

e-( α x / 
xmax) 

Enhanced 
PSO Method 
(1 / 1 + ( α x / 

xmax )) 
1 1.4992 1.4992 
2 1.4988 1.4985 
3 1.4982 1.4977 
4 1.4976 1.4970 
5 1.4970 1.4962 
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ed with 20 agents with centralized and distributed approaches 
[13]. The total task execution time decreases when the number 
of agents and grid resources increases. It is clear from the 
graph (Fig.12) that the centralized strategy leads to a bit better 
load balancing results, since tasks finish in a less time under 
the centralized control. This is more obvious when the number 
of the agents increases. 

It is reasonable that a centralized strategy can achieve a 
better scheduling, because full service advertisement leads to 
full knowledge on the performance of all grid resources. 
However, under a distributed mechanism, each agent has only 
up-to-date information on its neighboring agents, which limit 
the scheduling effect. But for the dynamic environment, dis-
tributed approach is only suitable and can cater the infor-
mation for load balancing. 
 

 
Fig.12. Comparison of total application execution time be-

tween the centralized and distributed strategies 
 
6 CONCLUSION 
This paper addressed the use of Genetic Algorithm and Tabu 
Search to solve the grid load balancing problem. Results of the 
experiment show that the two methods can be effectively used 
for grid load balancing. GA and TS shows similar performance 
results, and performs better than the Best-fit, Random, Min-
min, Max-min, and Sufferage algorithms. As the scheduling 
period is decreased resulting in more scheduling runs, the 
performance gains from GA and TS increases. One drawback 
of the GA and TS algorithms is that they incur extra storage 
and processing requirement at the scheduling node. However 
they may be overcome by the ever-decreasing costs of storage 
and processing power. 

It has been convincingly proved in the recent research pa-
pers that task scheduling on computational grids is best 
solved by heuristic approach. The project tried to cover the 
state-of-the-art studies about one such heuristic namely Ant 
Colony Optimization algorithm and its application to grid 
systems. The experimental results prove that the improved ant 
colony algorithm has effective role on grid scheduling. The 
modified pheromone updation rule makes the ant colony al-
gorithm to work more efficiently than the original ant colony 
algorithm. Thus grid scheduling problems can be easily over-
come using modified ant colony algorithm. 

PSO is applied for task scheduling problem on computa-
tional grids. Task scheduling algorithms based on PSO algo-
rithm can be applied in computational grid environment. Each 
particle represents a feasible solution. This project aimed at 

generating an optimal schedule so as to complete the tasks in a 
minimum time as well as utilizing the resources in an efficient 
way. The performance of the enhanced PSO has been im-
proved compared with the existing approach. The future work 
may include other hybridization techniques to further mini-
mize the execution time. 

Agent based approach addresses grid load balancing issues 
using a combination of intelligent agents and multi-agent ap-
proaches. For local grid load balancing, the iterative heuristic 
algorithm is more efficient than the first-come first- served 
algorithm. For global grid load balancing, a peer-to-peer ser-
vice advertisement and discovery technique is proven to be 
effective. The use of a distributed agent strategy can reduce 
the network overhead significantly and make the system scale 
well rather than using a centralized control, as well as achiev-
ing reasonable good resource utilization and meeting applica-
tion execution deadlines.  

All huristic and agent based approaches have been studied 
with the simulated environment GridSim. GA and TS are sim-
ple in nature and works in a restricted environment. They 
provide near by solutions from unpredictable data sets and 
their huge combinations and possibilities. They are suitable for 
the centralized approaches and resources are ready in the 
hand in the sense static requirements. Compared with GA and 
TS, ACO and PSO are doing better load balancing due to its 
dynamic and parallel in nature. ACO and PSO provide solu-
tions on the way and better will be selected among them in the 
sense global solutions are selected from local solutions.  Com-
pared with ACO and PSO, Agent based approach has better 
performance due to its pure decentralization. Local scheduling 
is taken care by the agents and global load balancing is done 
with multiple agents by the synchronization, coordination and 
decentralization or distribution in nature. 

 
7  FUTURE DIRECTIONS 
Hybridization of the techniques will improve the load balanc-
ing and utilization of the grid further. Further experiments 
will be carried out using the bigger grid test bed in real time 
scenario since a large deployment of the system is impossible 
due to the absence of a large scale grid test bed. The grid mod-
eling and simulation environment is under development to 
enable performance. All the heuristic methods are to be exer-
cised with real time environment rather than simulated envi-
ronment. The scalability of the agent system is to be investi-
gated when thousands of grid resources and agents are in-
volved. The next generation grid computing environment 
must be intelligent and autonomous to meet requirements of 
self management. Related research topics include semantic 
grids and knowledge grids [23],[24]. The agent-based ap-
proach described in this work is an initial attempt towards a 
distributed framework for building such an intelligent grid 
environment. Future work includes the extension of the agent 
framework with new features, like automatic QOS negotia-
tion, self-organizing coordination, semantic integration, 
knowledge-based reasoning, and ontology-based service bro-
kering 
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