
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 79
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Comparative Survey on Load Balancing
Techniques in Computational Grids

R. Rajeswari, Dr. N.Kasthuri

Abstract— Grid is the system which provides a new, powerful and innovative platform that caters the need of massively computational or
data intensive applications from its pool of resources like processors, memory, data, services etc. It differs from traditional computing sys-
tems because of its heterogeneous nature and back ground workloads. Performance and utilization of the grid rests on the optimal balanc-
ing of load among the available nodes which is very complex and highly dynamic in nature. Finding optimal solution in load balancing for
such an environment using the traditional method is an NP-hard problem whereas heuristic approaches will provide near optimal solutions.
Algorithms that could capture the dynamic need and complexity have to be developed for solving wide range of load balancing scenarios.
Heuristic and artificial life techniques have the power of providing near by solutions from large search spaces since it deals real world sce-
narios with the capability of handling very large dataset and combinations. In this study, suitability and performance comparison are dis-
cussed with various heuristic and agent based techniques. Genetic Algorithm, Tabu Search, Ant Colony Optimization, Particle swarm Opti-
mization are analyzed with their merits, demerits, solutions, issues and improvements towards load balancing in computational grid. Simi-
larity in their nature towards load balancing motivates the attempts in the experimentation to get near optimal solutions from unpredictable
information. Performance comparison is analyzed with algorithms like min-max, max-min and Sufferage embedded with Genetic Algorithm
and Tabu search. Another heuristic method, Ant Colony Optimization algorithm is suitable for scheduling in grid environment which in tern
balances the load. For the same purpose particle swarm optimization algorithm is also adopted. Particle Swarm Optimization is one of the
latest evolutionary optimization techniques by nature which has the better ability of global searching leading to minimal makespan time due
to the linear decreasing of inertia weight in it. From the literature, it could be understood that it was successfully applied in training the neu-
ral network and optimized result was been obtained. These techniques were studied with their successful results and analyzed. Agents can
also be applied for handling grid resources and multi-agent approach can be applied for balancing the load through out the system. Agents
can co-operate each other in making the decisions to balance the load among them through advertisement, discovery and distribution.
Many results are proving that intelligent agents are effective enough to achieve resource scheduling, load balancing, execution performance
and better resource utilization.

Index Terms— Agent, Ant Colony Optimization, Computational Grid, Genetic Algorithm, Load Balancing, Particle Swarm optimization, Tabu
Search.

—————————— ——————————

1 INTRODUCTION

Grid is defined as a type of parallel and distributed system

that enables the sharing, selection, and aggregation of geo-
graphically distributed autonomous resources dynamically at
runtime depending on their availability, capability, perfor-
mance, cost, and quality-of-service. Grid technology is defined
as the technology that enables resource virtualization, on de-
mand provisioning and resource sharing between organiza-
tions. It can be confined to the network of computer work-
stations within a bigger organization like corporation or it can
be a public collaboration.

Computational grid provides a better platform to acquire
large amount of resources as a single storage which enables
distributed processing of computational intensive applica-
tions. They are cost effective since it collects the information
about idle resources and make them under the use on demand
which enables pay for use. To fully utilize the resources with
conditions and constraints, resource management, efficient

allocation of resources to the jobs and balancing the load with
internal and external requirements are to be effectively han-
dled.

The load balancing mechanism aims at equally spreading
the load to each and every computing node which in turn
leads to maximize the utilization and minimize the total task
execution time [1]. Fair distribution is needed among all the
computing nodes to achieve the goals and objectives. Gradual-
ly the gap between heaviest and lightest load should be mini-
mized. Makespan is a metric which defines the amount of time
taken between the starting of the application and ending of the
same in a computing node.

In the centralized approach central node acts as scheduler
and makes all load balancing decisions where as all nodes are
engaged in load balancing decisions and implementation in
the decentralized approach [2],[3]. In static approach charac-
teristics of nodes and jobs are known in advance whereas they
are obtained on the fly in the dynamic approach [4].

From the literature three approaches are studied towards
load balancing in the grid environment namely Min-min,
Max-min, and Sufferage. For each and every task, minimum
completion time (MCT) is calculated. In the Min-Min ap-
proach minimum MCT among all tasks is selected for load
balancing where as it is reverse in Max-Min approach. Suffer-
age is the measure which is calculated as the difference be-
tween best MCT and second best MCT. Based upon the suffer-
age values load balancing is carried out among all the tasks.

————————————————
• Author R.Rajeswari is currently pursuing her Ph.D in Anna University,

Chennai, Tamilnadu, India, E-mail:rajeswarisel@gmail.com
• Co-Author Dr. N. Kasthuri is currently working as Professor in Electronics

and Communication Department,Kongu Engineering College, Perundurai,
Erode, Tamilnadu, Indi

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 80
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The term heuristic is used for algorithms which find solu-
tions among all possible combinations. These algorithms find
a solution close to the best one and they find it fast and easily
.In this paper, we analyze various heuristic methods like Ge-
netic Algorithm (GA), Tabu Search (TS) , Ant Colony Optimi-
zation (ACO) and Particle Swarm Optimization (PSO) for the
power of real world nature in taking decisions and Agent
based approaches for the power of decentralization. This is
done towards their functionality, performance, issues, merits,
demerits and scope to the improvement.

 GA is often used to solve the problem in which possible
solution involves searching a big search space of potential so-
lutions. Since load balancing in computational grid has also a
big solution search space, GA can be applied to derive the so-
lution for the same. Tabu search has been successfully applied
to a wide range of theoretical and practical problems, includ-
ing graph coloring, vehicle routing, job shop scheduling,
course scheduling, and maximum independent set problem
[5],[6],[7],[8],[9]. One main ingredient of Tabu Search is the use
of adaptive memory to guide problem solving. Tabu search
uses a set of strategies and learned information to mimic hu-
man insights for problem solving.

The use of Genetic algorithm and Tabu Search provides ef-
ficient solutions to the load balancing of grid. The Sufferage
algorithm is combined with GA, as well as TS, which im-
proves the overall performance of the algorithms. A compari-
son on the performance improvement of each algorithm is also
investigated.

The ant colony optimization algorithm is a heuristic algo-
rithm for solving computational problems which can be re-
duced to find good paths through graphs. This algorithm is a
member of swarm intelligence methods. This algorithm is aim-
ing to search for an optimal path in a graph based on the be-
havior of ants seeking a path between their colony and a
source of food. The original idea has since diversified to solve
a wider class of numerical problems. As a result, several prob-
lems have emerged, drawing on various aspects of the behav-
ior of ants.

Particle swarm optimization is an another algorithm mod-
eled on swarm intelligence, which finds a solution to an opti-
mization problem in a search space, or model and predict so-
cial behavior in the presence of objectives. The PSO is a sto-
chastic and population-based computer algorithm modeled on
swarm intelligence. Swarm intelligence is based on social-
psychological principles and provides insights into social be-
havior, as well as contributing to many engineering applica-
tions. The PSO algorithm is used to find an optimal solution to
an objective function in a search space which is a direct search
method depends only on the objective function. Hence it is
more powerful.

In agent based approach, each agent is responsible for re-
source scheduling and load balancing across multiple
hosts/processors in a local grid. The agent couples application
performance data with iterative heuristic algorithms to dy-
namically minimize task makespan and host idle time, whilst
meeting the deadline requirements for each task. The algo-
rithm is based on an evolutionary process and is therefore able

to absorb system changes such as the addition or deletion of
tasks, or changes in the number of hosts/processors available
in a local grid.

At the global grid level, each agent is a representative of a
grid resource and acts as a service provider of high perfor-
mance computing power. Agents are organized into a hierar-
chy and cooperate with each other to discover available grid
resources for tasks using a peer-to-peer mechanism for service
advertisement and discovery. Several metrics are considered
to measure the load balancing performance of grid agents. A
case study proves that intelligent agents, supported by appli-
cation performance prediction, iterative heuristic algorithms
and service discovery capabilities, are effective to achieve
overall resource scheduling and load balancing, improve ap-
plication execution performance and maximize resource utili-
zation.

The following section deals about the grid system and its
communication model that is used for this study. This is fol-
lowed by the above said heuristic and agent based methods
are analyzed to study the load balancing patterns. Experimen-
tations are illustrated with the simulation tool kit GridSim.
Result section provides the details of simulation and applica-
bility of the approaches.

2 SYSTEM MODEL
We consider the computational grid system as a set of sites
which are connected by a communication network. Each site
may contain many computing nodes and each and every node
can contain many processors with different computing power
and also heterogeneous in nature. A node may vary with other
nodes in total number of users in local as well as in network,
different capacity of memory, resources and other services.
Each and every node will also have its local load and remain-
ing part can only be spared as global resource.

In our context to constraint ourselves we take the jobs are
in full, each node has single processor and sites are intercon-
nected with message communication. Communication time
depends on the transmission delay, bandwidth and size of the
messages. Assuming our application model, we limit our as-
sumptions that each and every application is independent,
they do not require order of execution, they are computational
intensive, no consideration in operating system level and no
support of job migration and resource replication. Each and
every task has different computation and communication time
depends upon its own nature.

3 LOAD BALANCING IN GRID
Load balancing is a technique which enhances the usage of
resources, utilizing parallelism, exploiting the improvisation
of throughput and reduces the response time through the dis-
tribution of the applications in an appropriate fashion. Each
and every load balancing method is designed to spread the
load on resources equally and maximizes their utilization at
the same time minimizes the total task execution time. Selec-
tion of optimal set of jobs for transfer has a significant role on
the efficiency and effectiveness of the load balancing method

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 81
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

as well as grid resource utilization.
Load balancing algorithms are classified into many catego-

ries based on the criteria. They are like static or dynamic,
sender or receiver initiated, global or local strategies, central-
ized or decentralized, co-operative or non-cooperative, Adap-
tive or non-adaptive and one time assignment or dynamic
reassignment [12]. In static algorithms, the decisions are made
at compile time where requirements are initially estimated. In
dynamic load balancing, load balancer allocates/re-allocates
resources at runtime and uses the system-state information to
make its decisions. Adaptive load balancing algorithms adapt
their activities by dynamically changing their parameters, pol-
icies and system state.

Methods used in load balancing can be divided into three
classes namely centralized, decentralized or distributed and
hierarchical. In a centralized approach, all jobs are submitted
to a single schedule which is responsible for scheduling the
jobs on the available resources. Since all the scheduling infor-
mation is available at once, the scheduling decisions are opti-
mal but this is not very scalable.

In a decentralized model there is no central scheduler and
scheduling is done by the resource requesters and owners in-
dependently. This approach is scalable, distributed in nature,
and suits vey well for present grid environment. But individu-
al schedulers should cooperate with each other in scheduling
decisions and the schedule generated may not be the optimal
schedule. This category of load balancing is perfect for peer-to-
peer architectures and dynamic environments.

In a hierarchical model, the schedulers are organized in a
hierarchy. High level resource entities are scheduled at higher
levels and lower level smaller sub-entities are scheduled at
lower levels of the scheduler hierarchy. This model is a com-
bination of the above two models.

In centralized load balancing, algorithms are used in three
approaches. In the classical approach Random, Round-Robin,
MET (Minimum Execution Time), MCT (Minimum Comple-
tion Time), Min-Min, Max-Min and Sufferage methods are
used. In agent-based approach, intelligent agents and multi-
agent approach, agent-based Grid management infrastructure
with performance-driven task scheduler and agent with genet-
ic algorithm-based scheduler are attempted. In Evolutionary
Computing Approach, Genetic Algorithms, Tabu search, Ant
Colony Optimization and Particle Swarm Optimization are
used.

In the decentralized load balancing, again the algorithms
are used in three approaches. In the classical approach, sender,
receiver and stable symmetrically initiated adaptive algo-
rithms, State Broadcast Algorithm (STB) and Poll when Idle
Algorithm (PID) are used. In Ant Colony Optimization Ap-
proach, Ant Colony optimization, Anthill Framework (Messor
system) and Multiple Ant Colony Optimization (MACO) are
used. In the agent based approach, multi-agent systems with
forward and backward routing are used. In the routing, ABC
(Ant-Based Control system), Ant-Net (routing problem in
datagram networks), ASGA (ant colony systems with genetic
algorithm) are used. In another approach, Job Migration is also
used with load balancing.

Genetic Algorithm and Tabu search are evolutionary
search techniques to find solutions to optimization and search
problems. These techniques are inspired from evolutionary
biology and apply features such as inheritance, mutation, se-
lection, and crossover. They have been proved to work better
compared to classical algorithms such as Min-min, Max-min
and Sufferage in terms of time makespan, which is the total
completion time for all tasks. Each of these three algorithms
selects a job from a set of tasks, calculates its completion time
on each existing processor and assigns it to a resource itera-
tively.

In the Ant-Colony approach each job submitted to the Grid
invokes an ant and the ant searches through the network to
find the best node to deliver the job to. Ants leave information
related to the nodes they have seen as pheromone in each
node which helps other ants to find lighter resources more
easily. In the particle swarm approach, each node in the net-
work is considered to be a particle and tries to optimize its
load locally by sending or receiving jobs to and from its
neighbors. This process being done locally for each node, re-
sults in a move toward the global optima in the overall net-
work.

In agent based approach, load balancing is carried out with
combination of intelligent agents and multi-agent approaches
[13]. At the global grid level, each agent is acting as a high-
level representative of a grid resource and acts as a service
provider of high performance computing power. Agents are
organized into a hierarchy by assigning different roles. There
are three roles in the system: Broker, Coordinator and Agent.
They cooperate with each other to discover available resources
for tasks using service advertisement and discovery. The hier-
archical model can help when scalability problem arises.
When the number of agents increases, the hierarchy can help
in processing many activities in a local domain and does not
have to rely on some central agents. Still their architecture of
agents incorporates a central agent which coordinates the hi-
erarchy at the highest level.

3.1 Heuristic and Evolutionary Methods
The following heuristic and evolutionary algorithms are dis-
cussed in detail towards their functionality and suitability for
efficient and effective load balancing.

3.1.1 Genetic Algorithm
A Genetic Algorithm is a biologically inspired optimization
and searching technique. It mimics the behavior of evolution
of simple, single celled organisms. It is particularly useful in
situations like the solution space to be searched is huge, mak-
ing sequential search, computationally expensive and time
consuming. GA is a type of guided random search technique,
able to find efficient solutions which are not absolute optimal
but use reasonable amount of time and resources within the
constraints in a variety of cases. Effectiveness or quality of a
GA can be judged by its performance against other historical
known techniques in terms of solutions found, and time and
resources used to find the solutions. GA has shown extremely
effective in problems ranging from optimizations to machine

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 82
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

learning.
Some common terminologies used in GA are explained be-

low. The relationships between various units used in the GA
system are shown in Fig.1.

Fig.1. Genetic Algorithm System.

Population: A collection of chromosomes.
Chromosome: A collection of genes. Represents a solution or a
parameter set for the particular problem.
Gene: A basic entity in GA, a single gene represents a par-
ticular feature or Characteristic of individuals in the GA sys-
tem.
Allele: A value associated with a gene. Example: biologically
speaking, a gene for eye color may have an allele value of
'brown'.
Locus: The position of a gene in the chromosome.

The gene in GA takes on a value from an alphabet of size r €
Ζ+. Each chromosome / string then consists of a series of n
genes:

s = {b1,b2,… ,bn} (1)
resulting in a solution space of size rn. The most common and
generally most effective string representation is the binary
alphabet {0, 1}. In this case, each gene takes on a possible val-
ue of 0 or 1:

bi € {0,1} i = 1,2, … , n (2)
where by the solution space is now of size 2n. In most cases,
the use of binary gene results in longer chromosome length.
At the same time, this results in more genes available to be
exploited by the GA, resulting in better performances in many
cases. The evolution of the GA population from one genera-
tion to the next is usually achieved through the operators:
selection, crossover, and mutation.

3.1.1.1 Selection
Selection is the process of selecting chromosomes from the
current generation for processing to the next generation.
Highly fit chromosomes are usually given a higher chance of
being selected more often, thereby producing more offspring
for the next generation. Some common techniques to achieve
this objective include:
• Fitness-proportionate selection.
• Rank selection.
• Tournament selection.
• Elitism; this method is used in conjunction with the other

selection methods.

3.1.1.2 Crossover
Once chromosomes are selected, crossover is applied to the
chosen individuals. The crossover operator usually operates

on two individuals / parents to produce two children. It en-
sures that characteristics of each parent are inherited in the
children. Common crossover methods that are readily used
for binary gene include one-point, two-point and uniform
crossover. Most appropriate crossover method is selected de-
pends on the particular problems, chromosome encoding and
fitness function used.

In uniform crossover gene exchanges can occur at any posi-
tion on the chromosome. For example, if we have two parents
000000 and 111111, then to produce two offspring we go
through each of the six genes of one of the parent. For each
gene, there is a probability that this gene will be exchanged
with the other parent. As such, if an exchange happens at posi-
tion 2 and 5, then the two offspring produced will be 010010
and 101101.

3.1.1.3 Mutation
While the crossover operator works on a pair or more of
chromosomes to produce two or more offspring, the mutation
operator works on each individual offspring. The mutation
operator helps prevent early convergence of the genetic
algorithm by changing characteristics of chromosomes in
the population. Such changes in the chromosomes also results
in the GA's ability to jump to far away solutions, hopefully to
unexplored areas of the solution space. The mutation rate of
the chromosomes should not be set too high, as too much mu-
tations has the effect of changing the guided random search of
the GA to a purely random search.

3.1.1.4 Genetic Algorithm Framework
The GA used for efficient solutions to the load balancing prob-
lem, considering the points discussed above, is shown below.

Algorithm 1 (Genetic Algorithm for Load Balancing):

Input : Parameters for the GA.
Output: Population of solutions, P. Each of these solutions can

be used as a task schedule.
Begin

Initialize the population, P.
Evaluate P.
While stopping conditions not true do

Select Elite in P consisting of k (1 < k < popu-
lation size) best individuals.
Apply Selection from individuals in P to cre-
ate Pmating, consisting of (population size -
k) individuals.
Crossover Pmating.
Mutate Pmating.
Copy the whole individuals of Pmating to
P, replacing the worst (population size - k)
individuals in P.
Evaluate P.
If escape condition true
 Then Escape.

 End While
End.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 83
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The parameters for the GA are shown in Table 1. First, a
fixed number of tasks are considered for scheduling. This is to
stop the scheduler from scheduling an excessive number of
tasks at once. This also limits the computation time required
by the scheduler. In this study, a window size of eight times,
the number of nodes available is used. The window represents
all the tasks in the queue that will be considered for schedul-
ing. If the number of tasks in the queue is less than the win-
dow size then TaskSet consists of all the tasks in the queue.
Otherwise TaskSet consists of all the tasks in the window.
Note that a task remains in the scheduler's queue until it is
completed. Tasks that have been sent or are executing on
computing nodes still remain in the queue, as they may be re-
allocated to another node.

TABLE 1

GENETIC ALGORITHM PARAMETERS.
Window size w 8 × (number of nodes)
Population m 2 × (size of TaskSet)
Best cloned σ 5% of m
Tournament selection ps 0.8
Two-point crossover pc 0.8
Gene mutation pm 0.0005
Evolution period T 200
Max stale period Tstale 20
Escape mutation pmm 0.2

3.1.2 Tabu Search

Tabu search is also an evolutionary algorithm through its
intimate relation to scatter search and path relinking [10],[11].
Tabu Search provides compete solutions for numerous com-
putational studies. The improvements can be quite dramatic
for some cases. It moves from one solution to a neighboring
solution. In choosing the next solution, Tabu Search uses
memory and extra knowledge endowed about the problem. A
basic Tabu Search algorithm is shown below.

Algorithm 2 (Basic Tabu Search for Load Balancing):

Input : Parameters for the TS.
Output: A feasible solution to the problem.
Begin

Generate an initial solution s.
While stopping conditions not true do

Select next solution neighboring s.
Update memory.

End While
End

For a given problem to be solved using Tabu Search, three

information need to be defined: a set V of feasible solutions, a
neighborhood structure N(s) for a given solution s € V, and a
tabu list, TL. As shown in Algorithm 2, an initial solution s is
chosen from the set of feasible solution V. This initial solution
is usually chosen in a random fashion. Once an initial solution
is chosen, the algorithm goes into a loop that terminates when
one or more of the stopping conditions are met. In the next

step of Algorithm 2, the next solution si+1 is selected from the
neighbors of the current solution si, si+l € N(si). In a basic Ta-
bu Search, all possible solutions s € N(si) is considered, and
the best solution is chosen as the next solution si+1. The use of
such selection rule may result in the algorithm going in cir-
cles. At the very worst, the algorithm will go back and forth
between two solutions. To avoid this, memory is incorporated
into Tabu Search.

3.1.2.1 Tabu list
The algorithm keeps a list of tabu solutions in a memory. The
length of this tabu list may be varied, and a longer list will
prevent cycles of greater length k. However, it may be imprac-
tical to incorporate such memory. Simpler type of memories is
usually incorporated to remember the last k moves made. A
move for a solution si can be viewed as changes to get to a
new solution si+1 € N(si) and reverse also. The tabu search can
then keep a tabu list of the last k reverse moves made, and
avoid making these moves.

 Such a list is not a perfect replacement for a solution list.
The use of a move list does not guarantee that no cycle of
length < k will occur. In other cases, its use results in a restric-
tive search pattern - an unvisited solution may be ignored be-
cause a move to that solution is in the tabu list. Sometimes the
use of a move list results in both a loss of information and a
more restrictive search pattern. To partially overcome the re-
striction imposed by using a move list, a tabu search usually
incorporates aspiration conditions. If a tabu move leads to a
solution that is better than the best solution found so far, then
it should be selected. The important feature of tabu search is
search intensification and diversification. For this purpose, a
more elaborate memory structure needed to take into account
of recency, frequency, and quality of solutions and moves
made so far.

3.1.2.2 Search Intensification
In search intensification, exploration is concentrated on the
vicinity, or neighbors of solutions that have historically been
found to be good. During this process a modified fitness func-
tion is used to encourage moves that have historically been
found to be good. Reward value may be added to the fitness
function so that certain moves or solution's features become
more attractive. Search intensification is usually carried out
over a few numbers of iterations. If the process is not able to
find a better solution than the best one found so far, a search
diversification is usually carried out.

3.1.2.3 Search Diversification
The search diversification process attempts to spread out the
search process to unvisited regions, and encourages moves
that are significantly different from those that have been
found. For this purpose, a modified fitness function is used
with penalties applied to certain moves. For example, penal-
ties may be given to frequently made moves, or common so-
lution's features.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 84
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.1.2.4 Tabu Search Framework
The Tabu Search implementation for the grid load balancing
problem is graphically depicted in Fig.2. In the initialization
phase, a starting solution is created. To this end, a Sufferage
algorithm is used to generate the starting solution and the
tabu search algorithm explores the solution space from this
starting solution. During the exploration process, the best
move is selected, and is then put into a tabu list, to prevent
excessive cycling of solutions. Moves table is used instead of
solutions table due to the impracticality of using solutions
table.

Fig.2. Tabu Search Procedure

Here, the tabu list keeps a record of the movement of a task

to a particular computing node. Moves are kept in the tabu list
for a period of between TLmin and TLmax. The exact period
for each move is chosen randomly and uniformly from
[TLmin, TLmax]. Further to this is an aspiration condition,
whereby a move that's tabu will be accepted if it improves the
best solution found so far. To complement the exploration
process, search intensification and diversification are imple-
mented. The inclusion of each type improves the performance
of tabu search for the load balancing problem.

In search intensification, a modified fitness function is used
to decide the next move to be made. In this implementation,
moves with a history of good score are rewarded, so that such
moves are likely to be chosen during the intensification peri-
od. To do this, a score is kept for each move made: the best
move for the current iteration that gives a better solution than
the solution from the previous iteration is considered good;
the difference in value is then recorded. The reward for a
move is then the average of the calculated sum. At the start of
this intensification period, the tabu list is reset, and the period
that moves stay in the tabu list is shortened to [TLI, min, TLI,
max]. The search intensification is triggered when the best
solution found is repeated. This intensification procedure
would normally last for TI iterations.

Two types of search diversification procedure can be im-
plemented which are mild and hot. A modified fitness func-
tion is again used in the mild diversification procedure. Here,

frequently made moves are penalized, so that such moves are
less likely to be chosen during this procedure. The ratio of the
move to the total moves performed is calculated. The penalty
for a move is then calculated as the fitness value ratio. This
procedure is invoked when the search intensification is not
able to improve the solution (Fig.2). The procedure lasts for a
maximum period of TDm.

Finally, the hot diversification procedure is global in na-
ture, and is executed when the solution found is not improved
within a period Tstale. The procedure resets the tabu list, and
a new random solution is generated. The move counts used in
the mild diversification procedure are also reset. In the event
that the conditions for search intensification and hot diversifi-
cation are both satisfied, the search intensification takes prec-
edence. Further, at the beginning of each search intensification
and mild diversification, the countdown for Tstale is reset.

Each of the search intensification and mild diversification
procedure would normally last for TI and TDm respectively.
However, the procedure will exit and go back to normal ex-
ploration if a better solution is found. Finally, a global stop-
ping condition is used to stop the tabu search. Here, the tabu
search can be stopped after 200 iterations. An iteration can
include a normal exploration, a search intensification, or a
search diversification. Table 2 shows the tabu search parame-
ter values used in the experiment:

TABLE 2

TABU SEARCH PARAMETERS.
Parameters Values
Tabu period TLmin 5
Tabu period TLmax 10
Tabu period TLI,min 2
Tabu period TLI,max 5
Intensification period TI 13
Diversification period TDm 13
Max stale period Tstale 20

3.1.3 Ant Colony Optimization Algorithm

Ants are social beings with structured colonies based on
their individual behavior. For computational purposes, it is
relevant that the way they find paths between food sources
and anthill. While walking ants place some amount of phero-
mone on the ground. Ants smell pheromone and when choos-
ing their way, they tend in probability to the paths marked
with stronger pheromone concentrations. When the time pass-
es, the pheromone concentration decreases. Repeating the
same behavior, they compose optimized trails that are dynam-
ically defining and they use to find food sources and their
nest. This environment is very similar to the Grid and can be
used in a very direct way.

Algorithm 3 (Ant Colony Optimization for Load Balancing):

Input : Parameters for the ACO.
Output: Optimal solution to the problem.

Begin

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 85
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Initialize the pheromone
While stopping criterion not satisfied do

Position each ant in a starting node
Repeat

For each ant do
Chose next node
by applying the
state transition rate

End For
Until every ant has build a solution
Update the pheromone

End While
End

Each edge between node (r, s) has a distance or cost associ-

ated δ(r, s) and a pheromone concentration τ (r, s). Equation
(1) is the state transition rule, that is a probabilistic function
for each node u, that has not been visited by each placed ant
on node r.

We also have there the η(r, s) that is the reverse tau function.

The parameter β determine the relevance of the phero-
mone concentration compared with the distance or cost, δ(r, s)
, and always β > 0.

The pheromone concentration on (3) is applied in each
edge of the systems, for a global pheromone updating rule.

τ (r, s) = (1 − α)τ (r, s) + ΣΔτk(r,s) -------------- (4) (4)
Where α is the pheromone evaporation factor between 0 and
1. And Δτk(r, s) is the reverse of the distance or cost done by
ant k, if (r,s) is its path and is 0 if it is not in the path.

The ACO-Grid flavour modified from the original ACO is as

follows
• Every Grid request is an ant, when it finds its file ob-

ject, the ant died.
• The Grid replies routing is done with traditional

methods.
• ACO-Grid does not use global updating.
• Every time a request is processed on a Grid site, in-

formation is updated for all the site connections.
• The Grid distance or cost is defined on (5) as a func-

tion of network latency lt and bandwidth bw.

δ(r, s) = ltr,s * c1 + (M AXBW − bw r,s) ∗ c2 ----(5)
On (5) c1 and c2 are coefficients which balance the relative

relevance between latency and bandwidth, they will fit with
the bandwidth and latency values of the specific Grid infra-
structure, and also fit with their measure relationship (ms. and
MB/s.). For example: c1 = 1 and c2 = 0.2. Latency is always a
constant, and bandwidth has a variable behaviour depending
on sockets allocations and number of network request in a
specific moment. MAXBW is the highest bandwidth of the
Grid infrastructure. ACO-Grid realizes the performance due to
its features like no control traffic, distributed optimization,
localization and selection services, and autonomous manage-
ment of each node [14].

3.1.4 Modified Ant Colony Algorithm
The modified ant colony optimization is used to solve large
complex problems [15]. It requires grid scheduling to achieve
high performance which is a complex problem. Hence better
scheduling in grid systems can be achieved using heuristic
approaches. The basic Ant algorithm involves Transition
Probability and Pheromone Updating Rule. The modified ant
colony algorithm has changed the basic Pheromone updating
rule of original ant colony algorithm to improve the perfor-
mance. The improved pheromone updating rule is given by
(6).

τij(t)new=[{(1-)/(1+ρ)}*τij(t)old]+[{ρ/(1+ρ)}* ∆τij(t)] -------- (6)

Where
τij(t) - Trail intensity of the edge(i,j).
ρ - Evaporation rate.
∆τij(t) - Additional pheromone when job moves from
scheduler to resource.

The ants build a solution with the information stored in the
pheromone trail and the best heuristic function. The probabil-
ity of selecting job j to schedule next is given by the following
(7). In the equation, α defines the relative weight given to the
pheromone information and β defines the relative weight giv-
en to the heuristic information. If α is set to zero, then heuristic
information is only used and the ants effectively perform a
probabilistic search. If β is set to zero, pheromone information
is only used.

The probability selection is obtained as

Pij(t)k = [τij(t)]α*[ηij(t)]β/ΣuЄallowed(k) [τiu(t)]α*[ηiu(t)]β
………. (7)

The modified ant colony algorithm is as follows:

Algorithm 4 (Modified Ant Colony Optimization for Load
Balancing):

Input : Parameters for the ACO.
Output: Improvised solution to the problem.

Begin

Pk(r,s)=
[τ(r,s)][η(r,s)]β

 ……….. (3) Σ[τ(r,s)][η(r,s)]β

Where,
Pij(t) -Probability to move along the path (ij).
τij(t) -Trail intensity of the edge(i,j).
ηij(t) -Visibility (1 / distanceij).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 86
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Initialize the pheromone
While stopping criterion not satisfied do

Position each ant in a starting node
Repeat

For each ant do
Chose next node by applying the
state transition rate
Pij(t)k = [τij(t)]α*[ηij(t)]β
/ΣuЄallowed(k) [τiu(t)]α*[ηiu(t)]β
End For

Until every ant has build a
 solution
Update the pheromone
τij(t)new=[{(1-)/(1+ρ)}*τij(t)old] +
[{ρ/(1+ρ)}*∆τij(t)]

End while
End

3.1.5 Particle Swarm Optimization
Particle Swarm Optimization technique is also an evolutionary
algorithm employed in many optimization and search prob-
lems due to its simplicity and ability to tackle these problems
successfully [16],[17],[18],[19]. PSO optimizes an objective
function by iteratively improving a swarm of solution vectors,
called particles, based on special memory management tech-
nique. Each particle is modified by referring to the memory of
individual swarm’s best information. Due to the collective
intelligence of these particles, the swarm is able to repeatedly
improve its best observed solution and converges to an opti-
mum.

Algorithm 5 (Particle Swarm Optimization for Load Balanc-
ing):

Input : Parameters for the PSO.
Output: Optimal solution to the problem.

Begin

Initialize the swarm from the solution space
Repeat

Evaluate fitness of individual particles
Modify gbest, pbest and velocity
Move each particle to a new position.

Until convergence or a stopping condition is satisfied.
End

The working principle of PSO is shown in the Fig.3

Fig.3. Flow chart for Particle Swarm optimization

3.1.5.1 PSO Algorithm
Particle Swarm Optimization is an algorithm modeled on
swarm intelligence which finds a solution to an optimization
problem in a search space, or models and predicts social be-
havior in the presence of objectives. The PSO is a stochastic
and population-based computer algorithm which evaluates a
solution in the form of a fitness function. A communication
structure or social network is defined with nodes with their
neighbors to interact with each other. Then a population of
individual nodes defined as random guesses at the problem
solutions is initialized. These individuals are candidate solu-
tions which are known as the particles. An iterative process is
carried out to evaluate the fitness to improve these candidate
solutions is set in motion and remember the location where
they had their best success. The individual's best solution is
called the particle best (pbest) or the local best. Each particle
makes this information available to their neighbors. They are
also able to see where their neighbors have had success or not.
Movements through the search space are guided by these suc-
cesses up to the convergence of their population on a problem
solution by the end of the trial.

Each particle represents a candidate solution which is
based on the position of a particle is influenced by the best
position visited by itself by its own experience and the posi-
tion of the best particle in its neighborhood by the experience
of neighboring particles. When the neighborhood of a particle
is the entire swarm with the best position then it is the global
best (gbest) of the particle which is shown in Fig.4. The per-
formance of each particle measured using a fitness function
varies problem to problem. Each Particle in the swarm is rep-
resented by its current position and velocity.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 87
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.4. Flow chart for Particle Swarm optimization for Grid En-

vironment

3.1.6 Enhanced Particle Swarm Optimization
Optimal task scheduling will enable the effective balancing of
load. Representing a solution for task scheduling is one of the
most important issues in grid environment PSO performance
is tied with the solution representation. It is defined one parti-
cle as a possible solution in the population. The dimension n
corresponds to n tasks. The position vector of each particle
makes transformation about the continuous position. The
Smallest Position Value (SPV) rule is used to find a permuta-
tion corresponding to the continuous position xik.

For the n tasks and m resources problem, each particle rep-
resents a reasonable scheduling scheme. The position vector
xik has a continuous set of values and it is the position value
of ith particle with respect to the nth dimension. sik is the se-
quence of task of ith particle in the processing order.

Then the operation vector rik is defined by the equation,
R= sik mod m. The Initial population of particles is construct-
ed randomly for PSO algorithm. The initialized continuous
position values and velocities are generated by the formula,

Xk0 = xmin + (xmax - xmin) * r ----- Eq (8)
where, xmin = - 0.4 and xmax = 4.0 and r is the random num-
ber between 0 and 1.

Vk0 = Vmin + (Vmax - Vmin) * r ----- Eq (9)
where, Vmin = - 0.4 and Vmax = 4.0 and r is the random
number between 0 and 1.

With these parameters enhanced PSO algorithm is described
below.

Algorithm 6 (Enhanced Particle Swarm Optimization for Load
Balancing):

Input : Parameters for the PSO.
Output: Improvised solution to the problem.

Begin

Initialize the contents for this PSO algorithm.
Define the active resource and the list of tasks.

Set the dimension as the number of tasks.
Initialize position vector and velocity vector of each
particle randomly.

Xk0 = xmin + (xmax - xmin) * r
Vk0 = Vmin + (Vmax - Vmin) * r

Apply the SPV rule to find the permutation for the
tasks.
Evaluate each particle in the swarm using an objec-
tive function.
Find the best fitness value and set the global best
value.

Repeat

Update iteration variable.
Update inertia weight.
w = wend + (wstart - wend) * β
where, β = (1 / 1 + (α x / xmax)
Update velocity.
Vik+1 = wVik +c1 rand1 () x (pbes-
ti-sik) + c2 rand2() x (gbest-sik)
and update velocity of each particle.
Update Position.
Sik+1 = Sik + Vik+1
and update position of each particle.
Apply the SPV rule to find the permutation.
Update personal best, by evaluating the par-
ticle.
Update global best.

Until number of iteration exceeds the maximum
number of iteration

End

3.2 Agent based Approach
Software agents are used as powerful high-level abstraction
for modeling of complex software systems and pure decen-
tralization. This approach is used for building large-scale dis-
tributed systems with highly dynamic behavior. Agents are
used for the implementation of resource management system
for meta and grid computing. Each agent is responsible for
resource scheduling and load balancing across multiple hosts
/ processors in a local grid is enabled with multiple agents.
The agent couples application performance data with iterative
heuristic algorithms to dynamically minimize task makespan
and host idle time, whilst meeting the requirements for each
task. The algorithm is based on an evolutionary process which
will absorb system changes like addition or deletion of tasks
and changes in the number of processors available in a local
grid.

At the global level, each agent is a representative of a grid
resource and acts as a service provider of high performance
computing power. Agents are organized into a hierarchy and
cooperate with each other to discover available grid resources
for tasks using a peer-to-peer mechanism for service adver-
tisement and discovery.

3.2.1. Agent Structure

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 88
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Each agent is implemented for managing hosts / processors of
a local grid resource and scheduling incoming tasks to achieve
local load balancing. Each agent provides a high-level repre-
sentation of a grid resource and characterizes these resources
as high performance computing service providers. The archi-
tecture of each agent is illustrated in Fig.5 and explained be-
low.

Fig.5. Agent Architecture.

• Communication Layer. Agents in the system must be

able to communicate with each other or with users us-
ing common data models and communication proto-
cols. This layer provides an agent with an interface to
heterogeneous networks and operating systems.

• Coordination Layer. This layer decides how the agent
should act on the request according to its own
knowledge. If an agent receives a service discovery
request, it must decide whether it has related service
information.

• Local Management Layer. This layer performs func-
tions of an agent for local grid load balancing. This
layer is responsible for submitting local service in-
formation to the coordination layer for agent decision
making.

3.2.2. Agent Hierarchy
Agents are organized into a hierarchy in a higher level global
grid environment which is shown in Fig.6. The broker is an
agent that heads the whole hierarchy. A coordinator is an
agent that heads a sub-hierarchy. A leaf-node is actually
termed an agent. The broker and coordinators are also agents
which differentiate themselves with special positions in the
hierarchy. All the agents have the same functionality despite
their different positions. The broker does not have any more
priorities than coordinators or agents. The hierarchy of homo-
geneous agents provides a high-level abstraction of a dynamic
grid environment. New agents will join the hierarchy or exist-
ing agents will leave the hierarchy at any time. The hierarchy
exists only logically and each agent can contact others as long
as it has their identities.

Fig.6. Agent Hierarchy.

The hierarchical model can address the problem of scalabil-
ity to some extent. When the number of agents increases, the
hierarchy may lead to many system activities being processed
in a local domain through which it may scale well and does
not need to rely on central agents. An agent can act as all ab-
stractions like client, server and match maker, which provides
a simple and uniform abstraction of the functions in the grid
management. The service information provided at each local
grid resource can be advertised throughout the hierarchy and
agents can cooperate with each other to discover available
resources.

In this study, local grid load balancing is performed in each
agent using AI scheduling algorithms which is similar to that
of AppLeS, Ninf and Nimrod. The main advantage of GA
scheduling used is the quality of service (QoS) and multiple
performance metrics support. This work also focuses on the
cooperation of local grid and global grid levels of management
and scheduling. Globus toolkit, is becoming a standard for
grid service and application development, which is based on
web services protocols and standards. Condor-G and Nim-
rod/G use the Globus toolkit to integrate with the grid com-
puting environment though a centralized control structure is
applied in both implementations. Legion is developed using
an object-oriented methodology that provides similar func-
tionalities to the Globus. Agents are used to control the query
process and to make resource discovery decisions based on
internal logic.

Agent-based grid management is also used in JAMM and
NetSolve, where centralized broker/agents architecture is de-
veloped with peer-to-peer service advertisement and discov-
ery to achieve global grid load balancing. The agent-based
approach can provide a clear high-level abstraction of the grid
environment that is extensible and compatible for integration
of future grid services and toolkits.

In this work, GridSim toolkit has been used for exercising
all the algorithms under simulation towards effective load
balancing and better utilization of Grid.

4 GRIDSIM: GRID MODELING AND SIMULATION TOOLKIT
The GridSim toolkit provides a comprehensive facility for
simulation of different heterogeneous resources, users, appli-
cations, resource brokers, and schedulers. It can be used to
simulate application schedulers for single or multiple adminis-
trative domains and distributed computing systems such as
clusters and grids. Resource brokers perform resource discov-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 89
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ery, selection, and aggregation of a diverse set of distributed
resources for an individual user. Each user has his own pri-
vate resource broker and it can be targeted to optimize for the
requirements and objectives of its owner. Whereas schedulers
have complete control over the policy used for allocation of
resources. All users need to submit their jobs to the central
scheduler, which can be targeted to perform global optimiza-
tion such as higher system utilization and overall user satisfac-
tion depending on resource allocation policy or optimize for
high priority users.

4.1 Features

Salient features of the GridSim toolkit include the fol-
lowing:

• It allows modeling of heterogeneous types of re-
sources.

• Resources can be modeled operating under
space- or time -shared mode.

• Resource capability can be defined in the form of
MIPS.

• Resources can be located in any time zone.
• Leisure time can be mapped on resource’s local

time to model local workload.
• Resources can be booked for advance reservation.
• Applications with different parallel application

models can be simulated.
• Application tasks can be heterogeneous and they

can be CPU or I/O intensive.
• No limit on the number of application jobs that

can be submitted to a resource.
• Multiple user entities can submit tasks for execu-

tion simultaneously in the same resource, which
may be time or space-shared. This feature helps
in building schedulers that can use different mar-
ket-driven economic models for selecting services
competitively.

• Network speed between resources can be speci-
fied.

• It supports simulation of both static and dynamic
schedulers.

• Statistics of all or selected operations can be rec-
orded and analyzed using GridSim statistics
analysis methods.

4.2 System Architecture

A layered and modular architecture for grid simula-
tion is employed to leverage existing technologies and manage
them as separate components [20]. A multi-layer architecture
and abstraction for the development of GridSim platform and
its applications is shown in Fig.7.

• The first layer is concerned with the scalable Java’s in-
terface and the runtime machinery, called Java Virtual
Machine (JVM), whose implementation is available
for single and multiprocessor systems including clus-
ters.

• The second layer is concerned with a basic discrete-
event infrastructure built using the interfaces provid-
ed by the first layer.

• The third layer is concerned with modeling and simu-
lation of core Grid entities such as resources, infor-
mation services, application model, uniform access in-
terface and primitives application modeling and
framework for creating higher level entities. The
GridSim toolkit focuses on this layer that simulates
system entities using the discrete-event services of-
fered by the lower-level infrastructure.

• The fourth layer is concerned with the simulation of
resource aggregators called grid resource brokers or
schedulers.

• The final layer focuses on application and resource
modeling with different scenarios using the services
provided by the two lower-level layers for evaluating
scheduling and resource management policies, heu-
ristics, and algorithms.

Fig.7. A Modular Architecture for GridSim Platform

and Components.

5 RESULTS FROM LITERATURE
In the first set of experiment, the genetic algorithm (GA), tabu
search (TS), along with Best-fit, Min-min, Max-min, Sufferage,
and Random algorithms were applied to ten different net-
works and applications with the characteristics mentioned
earlier [21]. The relative makespan percentages are calculated
from the geometric mean of the makespans as obtained from
each algorithm. From the graph (Fig.8) it can be seen that tabu
search (TS) has the lowest makespans, followed closely by
genetic algorithm (GA). Best-fit and Random gives the worst
results of all the seven algorithms considered. Best-fit does not
perform as well because it does not re-schedule tasks once
they have been assigned, which is essential with varying
background workloads in the computing nodes. We can see
TS has a lower geometric mean of the maxspan, much lower
average percentage deviation, and higher average rank than
the other algorithms. Both the GA and TS has average per-
centage deviation that is at least two times smaller than the
other algorithms (Fig.9). TS also have an average rank com-
pared with other algorithms except GA.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 90
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig.8. Results for GA, TS and other associated basic algorithms

Fig.9. Effect of scheduling period on the geometric mean of the

makespans

The modified Ant colony algorithm is a best suited method
for tracking problem sets. The above approach simulated us-
ing GridSim toolkit and was found to be working efficiently
and effectively [15]. Experimental test carried out for a varied
range of input set to ascertain the efficiency of the algorithm.
From the results it is clearly evident that the modified Ant
colony algorithm offers better optimization a very fast rate.
Table 3 shows the amount of tasks considered for each period
of execution. The results are tabulated for interval of every 10
tasks, starting from 10 tasks to 100 tasks respectively.

TABLE 3
 COMPARISON BETWEEN EXISTING AND MODIFIED

ACO WITH NO. OF TASKS AND PERIOD OF EXECUTION
The following graph (Fig.10) shows the level of improve-

ment with modified approach when compared with normal
ACO.

Fig.10. Comparison between Existing and Modified ACO with

No. of tasks and period of execution

PSO and enhanced PSO algorithms are simulated in ALEA
Grid simulation tool kit [22]. Experiments have been carried
out with 5 iterations with the above said parameters. The ex-
perimental results show that the enhanced PSO algorithm is
able to get the better schedule as shown in Table 4.

TABLE 4
 COMPARISONS BETWEEN EXISTING AND ENHANCED
PSO METHODS WITH ITERATIONS AND INERTIA VAL-

UES

The following graph (Fig.11) shows comparisons modified

PSO and existing PSO method based on iterations and inertia
values. The curve obviously shows the improvement.

Fig.11. Comparison between iterations and inertia value.
For the agent based approach, experiments were conduct-

Num-
ber of
tasks
in-

volved

Modified ACO
(% of time taken

for execution)

ACO
(% of time

taken for exe-
cution)

10 0.32 0.59
20 0.72 0.81
30 0.42 0.62
40 0.63 0.75
50 0.81 0.89
60 0.49 0.70
70 0.67 0.80
80 0.62 0.76
90 0.50 0.66
100 0.73 0.84

ITERATION PSO Meth-
od

e-(α x /
xmax)

Enhanced
PSO Method
(1 / 1 + (α x /

xmax))
1 1.4992 1.4992
2 1.4988 1.4985
3 1.4982 1.4977
4 1.4976 1.4970
5 1.4970 1.4962

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 91
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ed with 20 agents with centralized and distributed approaches
[13]. The total task execution time decreases when the number
of agents and grid resources increases. It is clear from the
graph (Fig.12) that the centralized strategy leads to a bit better
load balancing results, since tasks finish in a less time under
the centralized control. This is more obvious when the number
of the agents increases.

It is reasonable that a centralized strategy can achieve a
better scheduling, because full service advertisement leads to
full knowledge on the performance of all grid resources.
However, under a distributed mechanism, each agent has only
up-to-date information on its neighboring agents, which limit
the scheduling effect. But for the dynamic environment, dis-
tributed approach is only suitable and can cater the infor-
mation for load balancing.

Fig.12. Comparison of total application execution time be-

tween the centralized and distributed strategies

6 CONCLUSION
This paper addressed the use of Genetic Algorithm and Tabu
Search to solve the grid load balancing problem. Results of the
experiment show that the two methods can be effectively used
for grid load balancing. GA and TS shows similar performance
results, and performs better than the Best-fit, Random, Min-
min, Max-min, and Sufferage algorithms. As the scheduling
period is decreased resulting in more scheduling runs, the
performance gains from GA and TS increases. One drawback
of the GA and TS algorithms is that they incur extra storage
and processing requirement at the scheduling node. However
they may be overcome by the ever-decreasing costs of storage
and processing power.

It has been convincingly proved in the recent research pa-
pers that task scheduling on computational grids is best
solved by heuristic approach. The project tried to cover the
state-of-the-art studies about one such heuristic namely Ant
Colony Optimization algorithm and its application to grid
systems. The experimental results prove that the improved ant
colony algorithm has effective role on grid scheduling. The
modified pheromone updation rule makes the ant colony al-
gorithm to work more efficiently than the original ant colony
algorithm. Thus grid scheduling problems can be easily over-
come using modified ant colony algorithm.

PSO is applied for task scheduling problem on computa-
tional grids. Task scheduling algorithms based on PSO algo-
rithm can be applied in computational grid environment. Each
particle represents a feasible solution. This project aimed at

generating an optimal schedule so as to complete the tasks in a
minimum time as well as utilizing the resources in an efficient
way. The performance of the enhanced PSO has been im-
proved compared with the existing approach. The future work
may include other hybridization techniques to further mini-
mize the execution time.

Agent based approach addresses grid load balancing issues
using a combination of intelligent agents and multi-agent ap-
proaches. For local grid load balancing, the iterative heuristic
algorithm is more efficient than the first-come first- served
algorithm. For global grid load balancing, a peer-to-peer ser-
vice advertisement and discovery technique is proven to be
effective. The use of a distributed agent strategy can reduce
the network overhead significantly and make the system scale
well rather than using a centralized control, as well as achiev-
ing reasonable good resource utilization and meeting applica-
tion execution deadlines.

All huristic and agent based approaches have been studied
with the simulated environment GridSim. GA and TS are sim-
ple in nature and works in a restricted environment. They
provide near by solutions from unpredictable data sets and
their huge combinations and possibilities. They are suitable for
the centralized approaches and resources are ready in the
hand in the sense static requirements. Compared with GA and
TS, ACO and PSO are doing better load balancing due to its
dynamic and parallel in nature. ACO and PSO provide solu-
tions on the way and better will be selected among them in the
sense global solutions are selected from local solutions. Com-
pared with ACO and PSO, Agent based approach has better
performance due to its pure decentralization. Local scheduling
is taken care by the agents and global load balancing is done
with multiple agents by the synchronization, coordination and
decentralization or distribution in nature.

7 FUTURE DIRECTIONS
Hybridization of the techniques will improve the load balanc-
ing and utilization of the grid further. Further experiments
will be carried out using the bigger grid test bed in real time
scenario since a large deployment of the system is impossible
due to the absence of a large scale grid test bed. The grid mod-
eling and simulation environment is under development to
enable performance. All the heuristic methods are to be exer-
cised with real time environment rather than simulated envi-
ronment. The scalability of the agent system is to be investi-
gated when thousands of grid resources and agents are in-
volved. The next generation grid computing environment
must be intelligent and autonomous to meet requirements of
self management. Related research topics include semantic
grids and knowledge grids [23],[24]. The agent-based ap-
proach described in this work is an initial attempt towards a
distributed framework for building such an intelligent grid
environment. Future work includes the extension of the agent
framework with new features, like automatic QOS negotia-
tion, self-organizing coordination, semantic integration,
knowledge-based reasoning, and ontology-based service bro-
kering

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 92
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

REFERENCES
[1] S. Salleh and A. Y. Zomaya, “Scheduling In Parallel Computing Systems:

Fuzzy and Annealing Techniques”, USA: Kluwer Academic Publishers, 1999.
[2] H.-C. Lin and C. S. Raghavendra, "A Dynamic Load-Balancing Policy with a

Central Job Dispatcher (LBC)", IEEE Transactions on Software Engineering,,
pp. 148-58,1992.

[3] N.G. Shivaratri, P. Krueger, and M. Singhal, "Load Distributing for Locally
Distributed Systems", Computer, pp. 33-44.,1992

[4] C. Kim and H. Kameda, "An algorithm for optimal static load balancing in
distributed computer systems", IEEE Transactions on Computers, vol. 41, pp.
381-84, 1992.

[5] M. A. S. Al, "Commercial applications of Tabu Search Heuristics", IEEE Inter-
national Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2391-95,
1998.

[6] V. R. Alvarez, E. Crespo, and J. M. Tamarit, "Assigning students to course
sections using Tabu Search", Annals of Operations Research, vol. 96, pp. 1-16,
2000.

[7] G. Barbarosoglu and D. Ozgur, "A Tabu Search algorithm for the vehicle
routing problem", Computers & Operations Research, vol. 26, pp. 255-70,
1999.

[8] A. Hertz and W. D. de, "Using Tabu Search techniques for graph coloring",
Computing, vol. 39, pp. 345-51, 1987.

[9] A. Hertz, E. Taillard, and D. Werra, "Tabu search in Local search in combina-
torial optimization”, E. Aarts and J. K. Lenstra, Eds. Chichester: John Wiley &
Sons Ltd., pp. 121-36, 1997.

[10] F. Glover, J. P. Kelly, and M. Laguna, "Genetic Algorithms and Tabu Search:
Hybrids for optimization", Computers & Operations Research, vol. 22, pp.
111-3, 1995.

[11] F. Glover, M. Laguma, and R. Marti, "Fundamentals of scatter search and path
relinking", Control and Cybernetics, vol. 29, pp. 653-84, 2000.

[12] Paritosh Kumar, "Load Balancing and Job Migration in Grid Environment",
M.E Thesis, 2009

[13] Junwei Cao, Daniel P. Spooner, Stephen A. Jarvis, and Graham R. Nudd,
“Grid Load Balancing Using Intelligent Agents”, 2001

[14] Vıctor Mendez Munoz1 and Felix Garcıa Carballeira, "Ant Colony Optimiza-
tion for Data Grid Replication Services", Technical Report RR-06-08. DIIS. UN-
IZAR, 2004.

[15] P.Mathiyalagan, S.Suriya, Dr.S.N.Sivanandam, “Modified Ant Colony Algo-
rithm for Grid Scheduling” (IJCSE) International Journal on Computer Sci-
ence and Engineering Vol. 02, No. 02, pp.132-139, 2010.

[16] Lei Zhang, Yuehui Chen, Bo Yang ”Task Scheduling Based on PSO Algo-
rithm in Computational Grid”, Sixth International Conference on Intelligent
Systems Design and Applications, 2006.

[17] M. Fikret Ercan ”A hybrid particle swarm optimization approach for schedul-
ing flow-shops with multiprocessor tasks”, International Conference on In-
formation Science and Security, 2008.

[18] Brian Ivers ,Gary G.Yen “Job Shop Optimization Through Multiple Inde-
pendent Particle Swarms” IEEE Congress on Evolutionary Computation,
2007.

[19] Shih-Tang Lo, Ruey-Maw Chen, Der-Fang Shiau and Chung-Lun Wu “Using
Particle Swarm Optimization to Solve Resource-constrained Scheduling Prob-
lems” IEEE Conference on Soft Computing in Industrial Applications, 2008.

[20] Rajkumar Buyya and Manzur Murshed, “GridSim: A Toolkit for the Model-
ing and Simulation of Distributed Resource Management and Scheduling for
Grid Computing”

[21] Riky Subrata Albert Y. Zomaya Bjorn Landfeldt,"Artificial Life Techniques for
Load Balancing in Computational Grids", 2006

[22] P.Mathiyalagan, U.R.Dhepthie, Dr. S.N.Sivanandam, “Grid Scheduling Using
Enhanced PSO Algorithm”, (IJCSE) International Journal on Computer Sci-
ence and Engineering Vol. 02, No. 02, pp.140-145, 2010.

[23] H. Zhuge, “Semantics, resource and grid, Future Generation Computer Sys-
tems”, 20(1), pp.1-5, 2004.

[24] H. Zhuge, “China’s E-Science Knowledge Grid Environment”, IEEE Intelli-
gent Systems 19(1), pp.13-17, 2004.

IJSER

http://www.ijser.org/

	1 Introduction
	2 System Model
	3 Load Balancing in Grid
	4 GridSim: Grid Modeling and Simulation Toolkit
	References

